

The Elementary
Commodore 128

A Guide to Programming

in BASIC 7.0

by
William B. Sanders, Ph.D.

San Diego State University

m™
'-=-~~

Copyright © 1986 by Microcomscribe
San Diego, California

All rights reserved under International and Pan-American
CopyrlghtConventions

Published in the United States of America by Microcomscribe

Library of Congress Cataloging in Publications Data
Sanders, William B. 1944-

The Elementary Commodore 128
1. Computer Programming

I. Sanders, William B. 1944-
II. Title

ISBN 0-931145-09-0

Manufactured in the United States of America

Table of Contents I

Chapter 1 Introduction 1

Chapter 2 Let's Go! 15

Chapter 3 Moving Along 31

Chapter 4 Branching Out 53
to New Frontiers

Chapter 5 Program Organization 75

Chapter 6 Inside the Mind of 103
Your Commodore 128

Chapter 7 Sound and Music 117

Chapter 8 Using Graphics 129

Chapter 9 All About Files 161

Chapter 10 Working Your Printer 185

Chapter 11 Program Hints and Help 203

Glossary BASIC 7.0 227
Appendix A ASCII Charts 243
Appendix B Screen Storage Maps 247
Product Guide 248

i

III Acknowledgements III

This book is the result of spending a lot of time with the
Commodore 128. To a large extent this was due to the
gracious help of Susan West of Commodore Business
Machines who supplied a pre-release version of both the
Commodore 128 and 1571 disk drive along with
documentation. Likewise, Jim Gracely of Commodore was
helpful in supplying technical assistance. The most help came
from the bunch of people who make up Commodore User
Groups in the San Diego area. Included in those who offered
advice, hints, tips and noise are Tony Payne, Darlene Fuller,
Don Johnson, Gerry White, Barbara Proudy, David
Skillman, Al Wilson, Jane Campbell, and Larry and Claudia
Carlson. Linda Edwards contributed directly to the chapter on
graphics by creating a number of the examples that highlight
BASIC 7.0's new graphic statements, functions and
commands. Linda is also Microcomscribe's senior editor,
and in that capacity, she took care of the book's details despite
the author's best efforts to misspell every other word.

My family were kind enough not to accuse me of ignoring
them too much, and I love them all. My wife Eli and sons
Bill and David are my real treasures. Our dog Jingle pulled
me away from my writing so that she could take me for my
daily walk. These retreats from a room full of computers
provided evidence that there is life beyond the cathode ray
tube after all.

11

I
• Introduction

This book is intended to help you operate your new
Commodore 128 Personal Computer, get started
programming and make life easier with your computer. It is
not for professional programmers or more advanced
applications. It is only the fIrst step, and it is for beginning
programmers on the Commodore 128 Personal Computer.
Everything will be kept on an introductory level, but by the
time you are finished, you should be able to write and use
programs. The C-128 is actually three computers in one; 1)
The C-128 mode, 2) the C-64 mode and 3) the CP/M mode,
but we will focus on programming in the C-128 mode. The
System Guide that comes with your computer gives you a
good start on getting going, and you should use it as a handy
reference. This book is going to focus on the actual
programming and how to get the most out our BASIC 7.0 in
the C-128 mode.

To best use ELEMENTARY C-128 it is suggested that you
start at the beginning and work your way through step-by­
step. I have tried to arrange the book so that each part and
section logically follows the one preceding it. Skipping
around might result in your not understanding some important

1

aspect of the computer's operation. The only exception to
this rule is the last chapter where I have put a number of
suggestions for programs you might want to buy for applied
purposes such as word processing and communications.
When you're finished with this chapter, it would be a good
idea to take a quick peek at some of the programs described in
the last chapter to see if any of them fit your needs while
you're learning about your C-128. You don't have to
purchase any of the programs but, depending on your
interests and needs, you will fmd some of them very useful.

Software and Hardware

Software consists of the programs which tell the computer to
do different things. Whatever goes into the computer's
memory is software. It is analogous to the mind or ideas.
Hardware is the physical elements of the computer. The
chips, keyboard, disk drive and circuit boards are hardware.
Treating the hardware as the brain, any idea which goes into
the hardware is the software. Software is to computers as
records are to stereos. Software operates either in Random
Access Memory (RAM) or Read Only Memory (ROM).
(Firmware is hardware with "burned in" software.)

RAM RAM is the part of the computer's memory into which
you can enter information in the form of data and programs.
The more memory you have, the larger the program and more
data you can enter. Think of RAM as a warehouse. When
you fIrst tum on your computer, the warehouse is just about
empty but as you run programs and enter information, the
warehouse begins fIlling up. The larger the warehouse, the
more information you can store there; when it is full, you
have to stop. Your C-128 has 128K of RAM. When you
fIrst turn on your system, it will indicate,

122365 Bytes Free

Only 8707 bytes of RAM are being used when you power up.
(Your BASIC 7.0 is using most of it). The "K" for
computerists refers to kilobytes or thousands-of-bytes , but
the actual number is 1024 bytes. Your C-128 can access one
megabyte (millions-of-bytes) of memory For now, all you
need to know about bytes is that they are a measure of storage
in computers. The more bytes, the more room you have.
Think of them in the same way you would gallons, inches or
meters - simply a unit of measure.

2

ROM A second type of computer memory is ROM, meaning
"Read Only Memory." This type of memory is "locked" into
your computer's chips. The difference between ROM and
RAM is that whenever you turn off your computer, all
information in RAM evaporates, but ROM keeps all of its
information. Don't worry, though, you can save whatever is
in RAM on diskettes and tape and get it back. We'll see how
that is done later.

Now that you know a few terms and enough not fear your
computer, let's get it cranked up and running. If you already
have your computer all hooked up and working properly, you
can skip the next section and go directly to the "Power On!"
section of this chapter. If you don't have it set up, see your
System Guide for instructions.

=Before you buy a printer .. .:
Before you buy a printer, decide on your needs and then

look at the features of the different kinds before buying! And
by all means, ask to see a demonstration on an C-128. Never
let a salesperson convince you a certain printer will work
without seeing a demonstration. Even a salesperson with the
best intentions (e.g. they think a certain printer is the best for
your needs) may not realize that the model cannot be
interfaced to your machine. Only a demonstration is sufficient
to remove all doubts! Your C-128 has a built in serial
(Asynchronous Communications or RS-232) interface, but
you can get a Parallel Printer attachment for your C-128, so
you can use either parallel or serial printers. My own
preferences lean toward parallel interfaces since there is a
wider selection of parallel printers on the market, and they
cost less than serial ones. Also, if you use the serial port for a
printer, you cannot use it for other devices that require serial
connections.

=Caution=
NEVER insert or remove cables or interfaces to your

computer while the POWER IS ON! Even if you are rich and
can afford to buy new chips every time you blow them by
messing with the hardware on your C-128 while the power is
on, you might give yourself the SHOCK of a lifetime by
doing so.

3

Other Add-Ons. Besides the disk drive, TV/monitor, and
printer, most new users do not have anything else to hook up
at this point, so you can skip on to the next section.
However, if you plan 011 expanding your C-128 or have other
gadgets you bought with your system, you had better read the
following section.

Modem A Modem is a device which allows your computer
to communicate with other computers over telephone lines.
These devices usually require that you hook up your
telephone to a part of the modem, or place the phone in an
acoustic sender/receiver. Not only can the modem be used to
call up computer bulletin boards, but you can access such
information centers as The Source and Compuserve to get
everything from weather reports to airline tickets! The speed
at which a modem can transfer information is called the "baud
rate", with the higher values meaning higher speed. The least
expensive are 300 baud modems, but I recommend at least a
1200 baud modem if you plan to put it to serious use. The
1200 baud modems cost a little more, but they are four times
faster, and you can save the difference in price on phone bills.

More wonderful gadgets There are numerous other add­
ons and interfaces to make the C-128 into a multifaceted
machine. Special interfaces will allow you to access and use a

4

variety of peripherals such as various disk drive systems,
printers and devices made for other computers. So while the
C-128 is a terrific microcomputer all by itself, it is fully
expandable to make it even better.

Power On! System Check·Out

Now that you have your C-128 all set to go, you simply plug
it in -- along with your TV or monitor, disk drive and printer­
- turn on the power and let her rip! On the right-hand side of
your computer near the back is a switch marked ON and
OFF. Turn it to the ON position and turn on your
TV Imonitor. If everything is connected, your screen will flrst
display the following:

COMMODORE BASIC V7.0 122365 BYTS FREE
(C)1985 COMMODORE ELECTRONICS, LTD.

(C)1977 MICROSOFT CORP.
ALL RIGHTS RESERVED

READY.

Adjust your monitor or TV so that you have a comfortable
contrast you can easily read. Directly below the READY.
message is a little blinking square. It is called the "cursor,"
indicating your computer is waiting for you to press some
keys and tell it what to do. Press the RETURN key several
times and the cursor will move down the side of the screen.
The message on top will scroll off the top of your screen.
Your cursor is now at the bottom of the screen. To get it to
the top, press the key marked F4 key and the key marked
SHIFT on the right hand portion of your keyboard. Now the
cursor will pop to the upper left hand corner. (Or you can just
enter SCNCLR and press the RETURN key.) That done,
you know your keyboard and computer are all set We will
return to the keyboard in a bit, but flrst let's check out your
printer, disk drive, and/or cassette tape recorder. To see if
your printer is working correctly, put in the following
statement EXAC1LY as it appears below: «RETURN>
means to press the key marked RETURN.)

10 OPEN4,4 <RETURN>
20 PRINT*4,"MY PRINTER IS WORKING!"
<RETURN>
30 PRINT *4 <RETURN>
40 CLOSE4 <RETURN>

5

Make certain you have written the line as it appears above. If
there are even minor differences, change it so that it is
precisely the same. Put the ribbon and some paper into your
printer. Now tum on your printer and make certain it is "ON
LINE". On some printers, a ~reen light next to ON LINE will
appear. Other printers use dIfferent notations to indicate ON
LINE. For example, the C. ITOH 8510 dot matrix printer
uses "SEL" to indicate it is ON LINE. Look at your printer
manual to fmd the equivalent to ON LINE. Now enter

RUN <RETURN>

If your printer is attached properly, it will print out the
message, MY PRINTER IS WORKING! when you press the
RETURN key. If a Syntax error or some other error message
jumps on the screen, It means that you wrote the little test line
improperly; so go back and do it again. If the system "hangs
up" - the screen goes blank and nothing happens - check to
make sure the printer is turned on, has the paper correctly
placed in the printer and is ON LINE. If it still doesn't work,
tum off the printer and the computer and review the steps for
hooking up your printer.

Operating Disk Drives

Assuming your system is working correctly, let's look at a
diskette.

Make sure your 1571 (or 1541) drive is connected and
plugged in an electrical outlet. Tum on your drive by flipping
the switch in the back. Place your DEMO disk in your drive
and press the key marked F3 view the contents of the disk.
(You may also enter the word DIRECTORY or CATALOG
and press the RETURN key to get the same results, but let's
not be dumb about this whole thing.) You will be shown the
contents of the disk, but since there are so many programs on
the DEMO disk, the first files will scroll off the top of the
screen and you cannot see them. Press the F3 key again, but
before the first material disappears, press the CONTROL and
S keys simultaneously. That will stop the scrolling. Now
press any other key to see the rest of the disk contents. You
will notice two types of files; SEQ and PRG. The PRG files
are PRoGram files. They can be DLOADed and RUN. The
SEQ files are SEQuential files that must be read by a program
file. (Don't worry about SEQ files now. We'll get to them in
the chapter on fIles further down the road.)

6

To practice getting a me off your disk and up and running,
enter the following:

DLOAD "DEMO <RETURN>

Your disk will whirr for a while than then print the READY.
signal and prompt. Enter RUN <RETURN> and you will see
a very good demo of what you can do with BASIC 7.0. (A
shortcut for DLOAD is to press the SHIFT and F2 keys
simultaneously.)

Since we're going to be creating our own programs, let's see
about getting our own disk ready for use. This involves a
process called formatting disks.

Use the following procedure:

Step 1: Place a blank diskette into your drive. There
should be a notch in the diskette. Orient the diskette so that
the notch is on the left. (When you place the diskette in the
drive correctly, it the notch will be right next to the word
DRIVE on your disk drive.)

Step 2: Close the drive by moving the drive arm
downward over the slot.

Step 3: Key in the following:

HEADER "DISK1" <RETURN>

Your computer will respond with

ARE YOU SURE?

Enter 'Y' for Yes and your disk will be formatted.

Look at your directory (remember DIRECTORY), and you
will see an inverse bar with the name of your disk. You are
now all set to save programs you write to the disk.

(Note: Once a disk is formatted, you should NOT format it
again unless you want to remove all programs from the
diskette.)

7

=Disk Access Shortcut #8502=

Instead of having to enter DLOAD and then RUN, you can
just enter RUN and the name of the program on disk, thusly,

RUN "DEMO" <RETURN>
That cannot be done on the Commodore 64, and since old
habits are hard to break, feel free to do it the old way. (You
new guys don't have all the bad habits yet; so just RUN the
program.)

LOADing and RUNning programs from tape

The procedure for loading and running programs from tape is
quite simple. The following steps show you how:

STEP 1. Make sure your tape recorder is connected
and rewind it to the beginning. If you have a tape with
programs on it, use it to test loading. (A game cassette will
work fine.) If you do not have a tape with a program on it,
enter the following program: Note: The ENTER is usually
referred to as ENTER. Now that you have used the ENTER
key for a while, we will use the term ENTER whenever you
are supposed to press the ENTER key.

NEW <RETURN>
10 PRINT "<YOUR NAME>" <RETURN>
20 END <RETURN>
SAVE "ME" <RETURN>

Rewind tape and then press REC and PLA Y keys
simultaneously on your recorder. When the recorder stops
and the READY. prompt comes on your screen, press STOP
and rewind your tape. Tum off your computer.

STEP 2. Turn on your computer and when you get the
cursor, write in the following:

LOAD "ME" <RETURN>

STEP 3. Press the PLA Y button on your tape
recorder. Your recorder will spin for a while and then stop
and you will get READY. and your cursor.

8

STEP 4. At this point your program is all loaded and
ready to go. Enter the word RUN, and your program will
then execute. If you used our example program, your name
will simply be printed on the screen. Rewind your tape now
so that it will be ready for the next time.

=What Every Cassette User Should Know=

Get a disk drive. Even a used 1541 drive is better than a
cassette tape. If you go without eating for two weeks, you
can easily afford one. (You should check with your
physician, fIrst, however.)

Tape to Disk Transfer

If you have a lot of programs on tape, and you want to
transfer them to disk, all you have to do is LOAD "PRG" and
then DSA VE "PRG". That will save the program on disk for
you. This is especially a good idea for those of you who have
upgraded your system from an entry level one to a disk
system. Programs will DLOAD from and DSA VE to disk a
lot faster than tape. You can also make back-up programs to
tape. You just DLOAD "PRG" from your disk, and SAVE
"PRG" to tape. Since tapes are a lot cheapter than diskettes,
this is an inexpensive way to store back-ups.

The Commodore 128 Keyboard

If you are familiar with a typewriter keyboard, you will see
most of the same keys on your Commodore 128. For the
most part, they do almost the same thing as your typewriter
keys. If you type in the word COMPUTER, hitting the same
keys you would on a typewriter, the word COMPUTER
appears on the screen just as it would on paper in a
typewriter. The upper-case (capital letters) and lower-case
letters work exactly the same as a typewriter. On the
Commodore 128, you can toggle the SHlFf LOCK by
pressing the "SHlFf LOCK" key. All keys will now be
capitalized except the number keys will remain the same.
(That is, they will not print the "shifted" characters as on a
typewriter.) When you want single upper-case characters or
the symbols on the upper portion of the keys, simply press

9

the SlllFT key and a letter to get upper-case as you would on
a typewriter. This is the same as the CAPS LOCK key in the
upper left hand portion of your keyboard.

Your screen can be either 40 or 80 columns if you have a
monitor. (The letters are fatter in 40 columns and easier to
see.) Using a television set, you can only get 40 columns; so
all of our examples will use 40 columns. Of course, you
cannot type just anything on the screen. If you start typing
away, you'll get a ?SYNTAX ERROR every time you press
RETURN unless you put in the proper commands.
Otherwise, though, think of your keyboard as you would a
typewriter keyboard. (Note: In most of the programming
examples, we will be using upper-case only.)

Special Computer Keys. While most of the keys on your
Commodore 128 look like those on a typewriter, many do
not, and they are important to know about. Color codes on
the C-128 keyboard reflect pressing a combination of keys.
The most important are the Fn (green) and Alt (blue) keys.
Whenever they are pressed with any of the other keys with the
same color code function on the colored background appear.
The following keys are peculiar to your computer; you will
soon get used to them even though they will be a bit
mysterious at fIrst:

CONTROL On the left hand side of your keyboard is the
"Control Key." By pressing the CONTROL key and certain
other keys, you are able to get special characters or functions.
As we encounter the need for various control characters they
will be illustrated and explained. The following are some
more useful ones:

Selected Control Codes:
CONTROL-l through 8 changes text color to color
indicated on number keys.
CONTROL-9 : Turns on reverse video.
CONTROL-O : Turns off reverse video.
CONTROL-X: Sets and clears tabs.

RETURN The RETURN key is something like the carriage
return on a typewriter. (It's the biggest key on your keyboad.)
In fact, you may see it referred to as a "Carriage Return" or
"CR" in computer articles. It works like a typewriter's
carriage return, because the cursor bounces back to the left­
hand side of the display screen after you press it.

10

Howev~r, there are other uses for the RETURN key which
will be discovered as you get into programming.

CURSOR CONTROL KEYS On the center-right hand
top portion of your keyboard are four cursor control keys.
These move the cursor in the direction indicated by the
arrows. (Also, in the lower right hand sector of the keyboard
are two more such keys. They are for the Commodore-64
mode, but they work in the C-128 mode as well)

CLR/HOME : If unSHIFfed, it laces cursor in upper left
hand corner of screen. SHIFfed CLRlHOME clears screen
and "homes" cursor.

INST/DEL: UnSHIFfed deletes character to left cursor.
SHIFfed, the key will open line at cursor for new text to be
inserted.

ESC In editing, quick line changes and movement are
possible. In Chapter 2, we will go over the ESC combinations
in the section on using your editor.

TAB KEY In the upper left hand corner of your keyboard,
tabs to the right Tab stops are made and cleared with
CONTROL-X. Hit it a few times to see it jump.

FUNCTION KEYS FI-F8. When you enter BASIC the
function keys' functions are listed to the screen when you
enter KEY and press RETURN. They will save a lot of time
for common functions, and later on we will see how to
change the function keys to be used for whatever commands
we want.. (If you ever want to see what the function keys
do, write in KEY <RETURN>; so it would be redundant to
list them all here.)

RUN/STOP This key stops a program or listings. It issues
a "break", but it will not affect the program.

RESTORE. This is used with the RUN/STOP key and
restore the screen to default conditions. This is a "panic"
button combination short of hitting the reset key located next
to the ON/OFF switch on the side of the machine.

RESET KEY. The reset key is not on your keyboard, but
on the side of the machine next to the ON/OFF switch. It will
cream memory and reset the computer to the start-up

11

condition. It is used to exit the Commodore-64 mode.

AL T and HELP. These keys are accessed by certain
applications. We won't be using them.

LINE FEED. Forces a line feed.

NO SCROLL. Works like CONTRL-S by toggling
stop/start scroll. Try it with your DEMO directory lisitng and
long program listings.

40/80 DISPLAY. Be careful with this key. If you lock it
down, it will give 80 column display with monitor only when
you reset or start up. If your computer is hooked up to a TV
set, you will get a blank screen and think something is
broken.

Numeric Keypad. For those of you familiar with a
numeric keypad, the 14 keys to the far right of your keyboard
works in that fashion. You can write BASIC 7.0 programs
that will respond to the numeric keypad, but not in the
Commodore 64 mode.

=Vat's Dot?=

If you have felt the F and J keys, and the 5 key on the
numeric keypad, you will find a small bump. This 'dot' is to
help you position your fingers on the correct keys. For those
of you who have not had an accounting or typing class, this
may come as a surprise since you only use two of your ten
fingers to program, calculate and word process. (If there are
'word processors'; then the accompaning verb would be to
'word process'. Then again, maybe not, but who cares?)

Math Functions on the Keys. Some of the familiar keys
have different meanings for the computer than we usually
associate with the key symbols. Many are math symbols you
mayor may not recognize. In the next chapter, we will
illustrate how these keys can be operated and discuss them in
detail. For now let's just take a quick look at the math
symbols.

12

Symbol
+

*
/

Meaning
Add
Subtract
Multiply (different from conventional)
Divide (different from conventional)
Exponentiation (power of)

In addition to some of the new representations for math
symbols, other keys will be used in a manner to which you
are not accustomed. As we go on, we will explain the
meanings of these keys, but just to get used to the idea that
your Commodore 128 has some special meanings for keys,
we'll show you some more here which will have special
meanings later.

Symbol
$

%
?

Meaning
U sed to indicate a string variable and
hexadecimal value.
Used to indicate "end of statement" in
pro~.
Indicates an integer variable.
Can be used as PRINT command.

Don't worry about understanding what all of these symbols
do for the time being. Simply be prepared to think in
"computer talk" about symbols. As you become familiar with
the key-board and the uses and meanings of these symbols,
you WIll be able to handle them easily, but the fIrst step is to
be aware that the different meanings exist

Summary

This first chapter has been an overview of your new machine.
You should now know how to hook up the different parts of
your Commodore 128 and get it running. Also, you should
be able to format a diskette, list the contents of a disk, and
load and run a program from disk or from tape. Finally, you
should be familiar with the keyboard and know what the
cursor means.

At this point there is still much to learn, so don't feel badly if
you don't understand everything. As we go along, you will
pick up more and more; what may be confusing now will
become clear later. Have faith in yourself and in no time you
will be able to do things you never thought possible. The next
chapter will get you started in learning how to program your

13

Commodore 128. It is vitally important that you key in and
run the sample programs. Also, it is recommended you make
changes in them after you have fIrst tried them out to see if
you can make them do slightly different things. Both practical
and fun (and crazy!) programs are included so that you can
see the purpose behind what you will be doing and enjoy it at
the same time.

14

Introduction

2
• Let's Go!

This chapter will introduce you to writing programs in the
language known as BASIC 7.0. Commodore-128 BASIC
7.0 is different than some other versions of the language,
including the BASIC in the Commodore 64 mode, and if you
are already familiar with BASIC, you will find these
differences. However, if you are new to the language; then
you will find programming in BASIC 7.0 very simple. To
get ready, turn on your computer, and when the "READY"
sign comes up on your TV, you are all set to begin
programming. If something else is on your screen press the
RESTORE and RUN/STOP keys simultaneously, and key in
NEW to clear memory.

Your very first statement! PRINT

Probably the most often used statement in BASIC is PRINT.
Words enclosed in quotation marks following the PRINT
statement will be printed to your screen, and numbers and
variables will be printed if they are preceded by a print
statement. It is used to command your computer to print
output to the screen or printer from within a program or in the

Immediate Mode. You may well ask what the difference is
between the Immediate and Program mode. Let's take a look.

1. Immediate Mode. The Immediate Mode executes a
statement as soon as you press RETURN. For example, try
the following:

PRINT"THIS IS THE Immediate Mode"<RETURN>
If everything is working correctly, your screen should look
like this:

PRINT "THIS IS THE Immediate Mode"
THIS IS THE Immediate Mode
READY.

See how easy that was? Now try PRINTing some numbers,
but don't put in the quote marks. Try the following:

PRINT 6 <RETURN>
PRINT 54321 <RETURN>

As you can see, numbers can be entered without having to use
quote marks, but as we will see later, the actual value of the
number is placed in memory rather than a "picture" of it.

2. Program Mode. This mode "delays" the execution of
the commands until your program is "RUN". All commands
that begin with numbers on the left side will be treated as part
of a program. Try the following:

10 PRINT "THIS IS THE PROGRAM MODE"
<RETURN> - nothing happens, right?

Enter the RUN command and your screen should look like
this:

10 PRINT "THIS IS THE PROGRAM MODE"
RUN
THIS IS THE PROGRAM MODE

Your very first program!
Clearing the screen and writing your name.

Let's write a program and learn two new commands. First,
the new commands are SCNCLR and END. The SCNCLR

16

statement clears the screen and places the cursor in the upper
left hand comer. The END statement tells the computer to stop
executing commands. From the Immediate Mode write in the
SCNCLR statement to see what happens. Now, let's write a
program using SCNCLR, END and PRINT. From now on,
press the RETURN key at the end of each line. Throughout
the rest of the book, I will no longer be putting in
<RETURN> except in reference to entries in the Immediate
Mode.

10 SCNCLR
20 PRINT "<YOUR NAME>"
30 END
RUN <RETURN>

All you should see on the screen is your name, READY. and
the blinking cursor. Now, we're going to introduce two
shortcuts that will save you time in pro~amming and in
memory. First, instead of entering new lme numbers, it is
possible to put multiple commands on the same line by using
a colon ":" between commands. Also, instead of typing in
PRINT, you can key in a question mark "?". Try the
following program to see how this works.

10 SCNCLR
20 ? "<YOUR NAME>" : END
RUN <RETURN>

It did exactly the same thing, but you did not have to put in as
many lines or write out the word PRINT. Neat, huh? Now,
as a rule of thumb, ALWAYS begin your programs with
SCNCLR. This will help you get into a habit that will payoff
later when you're running all kinds of different programs.
There will be exceptions to the rule, but for the most part, by
beginning your programs with SCNCLR, you will start off
with a nice clear screen rather than a cluttered one. While
we're just getting started, it will probably be a good idea to
use the colon sparingly. This is because it is easier to
understand a program with a minimum number of commands
in a single line. Later, when you become more adept at
writing programs, and want to figure out ways to save
memory and speed up program execution, you will probably
want to use the colon a good deal more. Also, we want to
make liberal use of the REM statement. After the computer
sees a REM statement in a line, it goes on to the next line
number, executing nothing until it comes to a statement that

can be executed. The REM statement works as a REMark in
your program lines so that others will know what you are
doing and as a reminder to yourself what you have done. Just
to see how it works, let's put it in our little program.

10 SCNCLR : REM THIS CLEARS THE SCREEN
20 PRINT "<YOUR NAME>" : END
30 REM THIS MAGNIFICENT PROGRAM WAS
CREATED BY <YOUR NAME>

Now RUN he program and you will see that the REM
statements did not affect it at all! However, it is much clearer
as to what your program is doing since you can read what the
commands do in the program listing.

Setting Up A Program Using Line Numbers.

Now that we've written a little program let's take a look at
using line numbers. In your fIrst program, we used the line
numbers 10,20 and 30. We could have used line numbers 1,
2 and 3 or 0, 1 and 2 or even 1000, 2000 and 3000. In fact,
there is no need at all to have regular intervals between
numbers, and line numbers 1, 32 and 1543 would have
worked just fIne. However, we usually want to number our
programs by lO's, starting at 10. You may well ask,
"Wouldn't it be easier to number them 1, 2, 3, 4, 5, etc.?" In
some ways maybe it would, but overall, it definitely would
not! Here's why. Type in the word LIST <RETURN>, and
if your program is still in memory it will appear on the screen.
Suppose you want to inset a line between lines 20 and 30 that
prints your home address. Rather than re-writing the entire
program, all you have to do is to enter a line number with a
value between 20 and 30 (such as 25) and enter the line.
Let's try it, but fIrst remove the END statement in line 20.

25 PRINT "<YOUR ADDRESS>"
RUN <RETURN>

Aha! You now have your name and address printed on the
screen, and all you had to do was to write in one line instead
of retyping the whole program. Now if we had numbered the
program by 1 's instead of lO's you would not have been able
to do that since there would be no room between lines
numbered 2 and 3 as there was between 20 and 30. You
would have to rewrite the whole program. Now with a small

18

program, this would not be much of a problem, but when you
start getting into 100 and 1000 line programs, you'll be glad
you have space between line numbers! LISTING YOUR
PROGRAM. As we just saw, using the word LIST gives us
a listing of our program. To make it neat, type in SCNCLR :
LIST <RETURN>, and you'll get a listing on a clear screen.
However, once you start writing longer programs, you won't
want to list everything, but only portions. Let's examine the
options available with the UST command

What You Write & What You Get

LIST Lists entire program
LIST 20 Only line 20 is listed (or any line number you

choose.)
LIST 20-30 All lines from 20 to 30 inclusive are listed

(or any other range of lines you choose).
LIST -40 Lists from the beginning of the program
to line 40 (or any other line number chosen).
LIST 40- Lists from line 40 (or any other line number

chosen) to the end of the program. Try listing different
portions of your program with the options available to see
what you get. The following commands will give you some
examples of the different options:

LIST 25
LIST 20-
LIST -20
LIST 25-30

=Irresponsible Programming 101=

Usually you will want to use the LIST command from the
Immediate Mode as you write your program. However, you
can use it from within a program. Just for fun, add the
following line to your program.

40 LIST

RUN your program and see what happens. Believe it or not,
there are some very practical applications we will see in some
programs much later in the book. For the time being, though,
it's iust for fun. Now, back to some serious stuff.

RENUMBER and AUTO

In our example program, we have really made a mess. We

started out with nice even line numbers and then by inserting a
bunch of lines, the listing looks really sloppy. Not only that,
but what would happen if we had to insert a lot of lines and
ran out of room between lines? Let's clean things up with the
RENUMBER command. Just enter,

RENUMBER <RETRVN>

and LIST your program. Everything is now nice and neat,
evenly numbered by 10's, and you did not have to re-write
the whole program. You can do more with RENUMBER by
providing parameters:

RENUMBER SLN,INC,OLN

SLN=Starting line number
INC=Increment
OLN =Old starting number

Key in the following examples to see what happens. As you
program more, the RENUMBER command will become
increasingly important It is used only in the Immediate
Mode; so press the RETURN key after each entry.

RENUMBER 5
RENUMBER 4,2,5
RENUMBER ,,8

Another helpful utility included in BASIC 7.0 is AUTO.
When you enter AUTO and a number, your program lines
will AUTOmatically be generated in increments specified by
the number. For example, try the following:

AUTO 10

Now enter,

10 REM I WONDER WHAT WILL HAPPEN

As soon as you press RETURN, your screen will show,

10 REM I WONDER WHAT WILL HAPPEN
20

Your cursor will be waiting for you on line 20; all set to go.

20

It will save you time, and you can pick up anywhere you want
after stopping. Also, it will help you get into the habit of
incremented line numbers.

Saving Your Program.

Suppose you write a program, get it working perfectly and
then turn off your computer. Since the program is stored in
the RAM memory, it will go to Never-Never Land, and you
will have to write it in again if you want to use it.
Fortunately, it is a simple matter to DSA VE a program to your
diskette as we saw to some extent in Chapter 1. Let's use our
program for an example of DSA VEing . a program to disk.
Make sure your program is still in memory by LISTing it, and
if it is not, re-write it. Make sure a formatted disk is in the
drive and write in the following: (If you are not certain about
disk formatting , review the section covering those items in
Chapter 1.)

DSAVE "MY PROGRAM" <RETURN>

The disk will start whirring and the green light will glow on
the 1571 disk drive. This means the disk drive is writing
your program to disk. When the red light goes out, press the
F3 key to get a directory . You will be presented with a
directory of the disk, and if you see MY PROGRAM in the
directory that means your program has been successfully
saved to disk.

Saving Programs On Tape.

To save a program to tape, put a blank cassette in your tape
recorder and rewind it. Press the RECORD button and the
PLA Y button together on your tape recorder and write in
SAVE "MY PROGRAM". The tape recorder will start
spinning, the message OK will appear on the screen along
with the message SA VING MY PROGRAM. When it is
done, the READY prompt will reappear on the screen. Your
program is now SA VEed to tape.

Retrieving Your Programs.

The best way to make sure you have SA VEd a program to
disk or tape is to completely turn off your Commodore-128,
and then turn it on again. Go ahead and do it. Then hit the

-----------------------------21

F3 key to view your disk directory. You should be able to
see your program, (MY PROGRAM) in the directory. Now,
enter DLOAD "MY PROGRAM". The disk drive will whirl
for a while, and then your program will be loaded and the
READY prompt will reappear. LIST and RUN your program
to make sure it's the same one you DSA VEd. If it is the
same, you know you have successfully DSA VEd it to disk. If
you have a tape cassette, all you have to do is to press the
PLAY button on your recorder and enter LOAD "MY
PROGRAM." The tape will whirl looking for the program,
and then load it, responding with a READY when completed.
LIST and RUN it to make sure it's the correct one.

=A SAFETY NET=

As you begin writing longer programs, every so many lines,
you should SA VE your program to disk or tape. In this way,
if your dog accidentally trips over your cord and turns off
your computer, you won't lose your program and have to
shoot the offending pooch. Saves both programs and dogs.

Now that you have SA VEd and LOADed programs, let's look
at another neat trick. Remembering you SAVEd your file
under the name MY PROGRAM, let's change the contents of
that file. First, add the following line and then LIST your
program:

27 PRINT "<YOUR CITY, STATE & ZIP>"

Your program is now different than the program you SAVEd
in the file MY PROGRAM since you have added line 27.
Now write in,

DSAVE "@MY PROGRAM"<RETURN>

Clear memory with NEW, DLOAD the file MY PROGRAM
and LIST it. As you can see, line 27 is now part of MY
PROGRAM. All you have to do to update a program is to
DLOAD it, make any changes you want, and then DSA VE it
under the same file name using the "@" symbol. However,
BE CAREFUL. No matter what program is in memory, that
program will be DSA VEd when you enter the DSA VE
command; therefore, if your disk has PROGRAM A and you
write PROGRAM B, and then SA VE it under the title

22

PROGRAM A, it will destroy PROGRAM A and the
DSA VEd program will actually be PROGRAM B. Also, if
you have a really important program, it is a good idea to make
a "back-up" file. For example, if you saved your current
program under the file names, MY PROGRAM and MY
PROGRAM BACK-UP, it would have two files with exactly
the same program. To really play it safe, save the program on
two different diskettes.

=1 TOLD YOU SO DEPT.=

Sooner or later the following will happen to you: You will
have several disks or tapes, one of which you want to format
or save programs on. You will pick up the wrong diskette or
cassette, one with valuable programs on it. There will be no
write protect tab on the diskette or cassette, and after you
format it or overwrite programs on it and blow away
everything you wanted to keep, you will realize your mistake
and say, "!&$#"!%&", and kick your dog. You cannot
prevent that from happening at least once, believe me.
Therefore, to insure that such a mistake is not irreversible, do
the following: MAKE BACK-UP's. Take your ORIGINAL
and put it somewhere out of reach, and when you accidentally
erase a disk or tape, you can make another copy. Remember,
if you fail to follow this advice, your dog will have sore ribs.
Be kind to your dog.

Using Your Editor

By now you probably entered something and got a
?SYNTAX ERROR, ?SYNTAX ERROR IN 30 (referring to
line 30 or any other line where an error is detected) or some
other kind of error message, such as REDO FROM START,
that told you something was amiss.. This occurs in the
Immediate mode as soon as you hit RETURN and in the
Program mode as soon as you RUN your program.
Depending on the error, you will get a different type of
message. As we go along, we will see different messages
depending on the operation. For now, we will concentrate on
how to fix errors in program lines rather than the nature of the
errors themselves. This process is referred to as "editing"
programs. (See APPENDIX A for a complete list of error
messages.)

Deleting Lines. The most simple type of editing involves
inserting and deleting lines. Let's write a program with an
error in it and fix it up.

NEW<RETURN >
10 SCNCLR
20 PRINT " AS LONG AS SOMETHING CAN"
30 PRINT "GO WRONG" : REM LINE WITH

ERROR
40 PRINT "IT WILL"
50 END
RUN <RETURN>

If the program is written exactly as depicted above you will
get a ?SYNTAX ERROR IN 30. Now, write in,

30 <RETURN>
LIST <RETURN>

What happened to line 3D?! You just learned about deleting a
line. Whenever you enter a line number and nothing else, you
delete the line. We already learned how to insert a line; so all
you have to do to I1X the program is enter the following;

30 PRINT "GO WRONG"

Now run the program. It should work fme. The error was
inserting the colon between the PRINT statement and the
words to be printed. Another way you could have fixed the
program was simply to re-enter line 30 correctly without first
deleting it, but I wanted to show you how to delete a line by
entering the line number. USING THE COMMODORE-128
EDITOR. Within your COMMODORE-128 is a trusty
editor. To see how to work with your editor, we'll write
another bad program and fix it. OK, write the following
program and RUN it.

24

NEW <RETURN>
10 SCNCLR
20 PRINT "IF I CAN GOOF UP A PROGRAM "
30 PRINT "I CAN" : FIX IT: REM BAD LINE
40 END
RUN <RETURN>

All right, you got a ?SYNTAX ERROR IN 30. To repair it,
instead of rewriting line 30 do the following:

STEP 1. LIST your program.

STEP 2. Using the arrow cursor keys at the top of your
keyboard, "walk" the cursor to LINE 30.

STEP 3. Now "walk" the cursor to the right until it is just
to the right of the fIrst colon.
STEP 4. Press the INSTIDEL until the colon and quote
mark after CAN" disappear.

STEP S. Press the right arrow cursor key until the cursor is
right over the colon. Now press SHIFT INSTIDEL and the
colon will jump a space to the right

STEP 6. Now, simply enter a quotation mark after to "T' in
the word "IT' in the space you INSerTed with your editor.
Press RETURN and you're all fmished.

LIST the program again. Line 30 should now be correct.
Now RUN the program. You should have seen the state­
ment, IF I CAN GOOF UP A PROGRAM I CAN FIX IT.

Let's learn more about the editor. Put in the following
program: (Remember, in BASIC, we can use question marks
to replace PRINT statements. If you LIST the program
before you run it, you will see that all of the question marks
have magically been transformed to PRINT statements.)

10 SCNCLR
20 ? "SOMETIMES I LIKE TO WRITE LONG,

LONG, LONG, LONG LINES " : WHEW!
30 ?"ANO SOMETIMES I LIKE SHORT LINES"
40 END

LIST <RETURN>
{See what happened to the question marks.}

RUN <RETURN>

OK, after you ran the program it went EI Bombo. The
problem was that we stuck in that WHEW! without a PRINT
statement or quote marks after the colon had terminated the
line, or, alternatively, a REM statement before WHEW!. To
repair it, LIST the program, "walk" the cursor up to line 20
using the arrow keys and starting at line 20 retrace the line up

-------------------------------25

to where the mistake was made. To make it simple, remove
the second quote mark, and leaving the colon in place, add a
quote mark after the word WHEW!. Since the colon is now
inside the quote marks, it will be printed as part of the PRINT
statement and be ignored as a line termination statement. Press
RETURN. Now RUN the program. Now, let's take a look
at a feature of the COMMODORE-128 editor that might cause
some problems. Enter the following BUT DO NOT IllT
RETURN!!!!:

20 PRINT "I LIKE TO COMPUUUUUUT

Whoops! There's a mistake, but you haven't fInished the
line. No sweat. Just press the arrow keys and back the
cursor over the multiple "U's" and re-enter it correctly.
However, you fInd that when you press the arrow key instead
of walking the cursor, you get inverse vertical lines or
brackets. With the up/down arrows you get big blue dots
and inverse "Q's". What's going on!?? Not so elementary,
Watson. As we noted in Chapter 1, the COMMODORE-128
~ives you the option of printing those inverse characters
mside a set of quotation marks, and to make them, you have
to press the arrow keys. To make repairs, simply press
RETURN and then using the arrow keys walk: up and make
the repairs. As you will see, the arrow keys are now working
fIne, even inside the quotation marks. (HINT: Let's face it, it
would have been a lot easier simply to press the INSTIDEL
key a bunch of times to get rid of those offending "U's", but
then you would never have learned why your arrow key went
nuts inside the quotation marks.)

=Watch Out For 'RUNDY'=

After editing with the COMMODORE-128, I have often
entered RUN over the READY prompt, ending up with
"RUNDY". Of course, instead of having the program RUN,
it gives a ?SYNTAX ERROR. On some computers, as soon
as you press RETURN, the remaining characters on the line
are forgotten if the cursor has not been passed over them.
Therefore, if you are used to other kinds of computers, watch
out for RUNDY!

26

More Editing. Let's do a few more things with your editor
before going on. We'll practice some more with inserting
characters and numbers, but we will also see how to do edit
groups of characters. So, let's see how we can use the editor
to do more with "insertions." Try the following little program:

10 SCNCLR
20 PRINT "NOW IS THE TIME FOR ALL GOOD

MEN";
30 PRINT "TO COME TO THE AID OF THEIR

COUNTRY"
40 END

SO far so good, but you meant to include women as well as
men in line 20. You could retype the entire line, but all you
really need to add is AND WOMEN after MEN. Also, it's
really boring to have everything in upper case. Let's change
the line to include women and make it both upper and lower
case:

STEP 1. Press the "COMMODORE" and SHIFf sim­
ultaneously, and everything will go to lower case characters.

STEP 2. "Walk" the cursor up to the beginning of the LINE
30 using the arrow keys and then place the cursor to the right
of the fIrst quotation mark.

STEP 3. Press the SHIFf and INSTIDEL keys to make
enough spaces to include "and women," and enter "and
women."

STEP 4. To make the sentence correct, place the cursor
over the "n" in "now" in LINE 20 and press SHIFf and "N"
to capitalize the fIrst letter of the sentence.
After these repairs, you now have upper and lower case, and
when you RUN your program it should read;

Now is the time for all good men and women to come to the
aid of their country.

You will save yourself a great deal of time if you use the
editor rather than retyping every mistake you make.
Therefore, to practice with it, there are a several pairs of lines
below to repair. The first line shows the wrong way and the
second line in the pair shows the correct way. Since "little"
things can make a big difference, there are a number of

27

changes to be made. However, as you will soon see, those
little mistakes are the ones we are most likely to get snagged
on. Practice on these examples until you feel comfortable
with the editor - time spent now will save you a great deal
later.

Editor Practice

50 PRINT PEOPLE ARE SMARTER THAN COMPUTERS
50 PRINT"PEOPLE ARE SMARTER THAN COMPUTERS"

10 PRINT SCNCLR
10 SCNCLR

80 PRINT "A GOOD MAN IS HARD TO FIND"
80 PRINT "A GOOD PERSON IS HARD TO FIND"

40 SCNCLR PRINT "WE'RE OFF!
40 SCNCLR : PRINT "WE'RE OFF!"

If you fixed all of those lines, you can repair just about
anything. Once you get the hang of it, it's quite simple.

Using the ESC key with Editing

For those of you used to editing on the Commodore 64, you
will find the ESC key editing a big time-saver. In Appendix I
of your System Guide there is a full set of ESC codes, and
here we are going to focus only on those that are the most
useful and list them in terms of how useful each is.

Esc Key±
A
o
J
K
D
I
Q
P
@

Edit Operation
Start auto-insert
Disable auto-insert
Move to start of current line
Move to end of current line
Delete current line*
Insert blank line at cursor position
Erase to end of current line
Erase to beginning of current line
Clear to end of screen

*Deletes line from screen but not from memory.

To get the hang of the ESC key, go back and try them out on
the editor practice you've already done to see if they save you
28 _

time. When you're finished with that, try the following:

10 PRINT "I LIKE MY 128"
10 PRINT "I LIKE MY COMMODORE 128"

10 PRINT "HER'S A PROBLEM HERE
SOMEWHEREEEE" END

10 PRINT "THERE'S A PROBLEM HERE
SOMEWHERE" : END

=Free Tip For Beginners=

Nobody remembers everything about programming. What I
have found useful is to put little yellow stick-urn tags in my
computer books to mark pages with some valuable stuff to
look up; like ESC codes. On the tags, I write what the tag
marks, and looking stuff up is a lot easier.

Elementary Math Operations

So far all we've done is to PRINT out a lot of text, but that
isn't too different than having a fancy typewriter. Now, let's
do some simple math operations to show you your computer
can compute! Enter the following:

SCNCLR
PRINT 2 + 2

This is what your screen should look like now:
PRINT 2 + 2
4

Big deal, so the computer can add - so can my $5 calculator
and my 11 year old kid. Who said computers are smart? The
programmer (you) is who is smart. Ok, so let's give it a little
tougher problem.

SCNCLR
PRINT 7.87 * 123.65

Still nothing your calculator can't do, but it'd be a little rough
on the 11 year old. As we progress, we can include more and
more aspects of mathematical problems, and in the next
chapter, we will see how we can store values in variables and
a lot of things that would choke your calculator. For now,
though, all we'll do is to introduce the format of mathematical
manipulations. The "+" and "_" signs work just as they do in

29

regular math, and the "x" is replaced by "*" (asterisk) for
multiplication and "-" is replaced by the "/" (slash) for
division. As we begin dealing with more and more complex
math, we will need to observe a certain order in which
problems are executed. This is called "precedence."
Depending on the operations we use, and the results we are
attempting to obtain, we will use one order or another. For
example, let's suppose we want to multiply the sum of two
numbers by a third number - say the sum of 15 and 20
multiplied by 3. If you entered

3 * 15 + 20
you would get 3 multiplied by 15 with 20 added on. That's
not what you wanted. The reason for that is precedence -
multiplication precedes addition. To help you remember the

precedence, let's write a little program you can run and then
play with some math problems in the Immediate mode to see
the results and refer to your "Precedence Chart" on the screen.
(This little program is quite handy; so save it to disk or tape to
be used later.)

10 SCNCLR
20 PRINT "1. - (MINUS SIGNS FOR NEGATIVE

NUMBERS - NOT SUBTRACTION)"
30 PRINT "2. i (EXPONENTIATION)"
40 PRINT "3. * / (MULTIPLICATION AND

DIVISION)"
50 PRINT "4. + - (ADDITIONS AND

SUBTRACTIONS)"
60 PRINT "NOTE: ALL PRECEDENCE IS FROM

LEFT TO RIGHT"
70 PRINT "YOUR COMPUTER FIRST EXECUTES

THE NUMBERS IN PARENTHESES, WORKING
ITS WAY FROM THE INSIDE OUT IN
MULTIPLE PARENTHESES."

Try some different problems and see if you can get what you
want. RE-ORDERING PRECEDENCE. Once you get the
knack of the order in which math operations work, there is a
way to simplify organizing math problems. By placing two
or more numbers in PARENTHESES, it is possible to move
them up in priority. Let's go back to our example of adding
15 and 20 and then multiplying by 3, but this time we will use
parentheses.

PRINT 3 * (15 + 20)

30

Now since the multiplication sign has precedence over the
addition sign, without the parentheses, we would have gotten
3 times 15 plus 20. However, since all operations inside
parentheses are executed first, your computer FIRST added
15 and 20 and then multiplied the sum by 3. If more than a
single set of parentheses is used in an equation, then the
innermost is executed fIrst, working its way out.

=The Parentheses Dungeon=

To help you remember the order in which math operations are
executed within parentheses, think of the operations as being
locked up in multi-layer dungeon. Each cell represents the
innermost operation, and the cells are lined up from left to
right. Each ''prisoner'' is an operation surrounded by walls of
parentheses. To escape the dungeon, the prisoner must first
get out of the innermost cell, then the prisoner goes to his
right and releases any other prisoners in their cells. Then they
break out of the "cell-block" and finally out into the open.
Unfortunately, since operations are "executed", this is a lethal
analogy for our poor escaping ''prisoners.'' Do some of the
examples and see if you can come up with a better analogy.

The following examples show you some operations with
parentheses.

PRINT 20 + (10 * (8 - 4))
PRINT (12.43 + 92) / (3 i (11 - 3))
PRINT (22 * 3.1415) * (22 * 3.1415)
PRINT «16 / 4) * (3 + 5)) / 18
PRINT 19 + 2 * (51 / 3) - (100 / 14)

Now, try some of these problems in the proper format
expected by your computer:

Multiply the sum of 4 , 9 and 20 by 15.

Multiply 35 by 35 and the result by pi {SHIFf i} The
vertical arrow/pi key is located between the asterisk and
RESTORE keys. (You realize that this will compute the area
of a circle with a radius of 35, and to find the area of any

30-a

other circle, just change 35 to another value.) Pi (SHIFf i) is
treated just like any other number you enter, but to save time,
you only need a single key. Pretty neat, huh?

Add up the charges on your long distance calls and divide the
sum by the number of calls you made. This will give you the
average expense of your calls. Remember, though, you have
to do this in one set of statements in a single line. Do the
same thing with your check book for a month to see the
average (mean) amount for your checks.

Summary

This chapter has covered the most basic aspects of
programming, and at this point you should be able to use the
editor in your Commodore 128, write commands in the
Immediate and Program (deferred) modes. Also, you should
be able to manipulate basic math operations. However, we
have only just begun to uncover the power of your computer,
and at this stage, we are treating it more as a glorified
calculator than a computer. Nevertheless, what we have
covered in this chapter is extremely important to understand,
for it is the foundation upon which your understanding of
programming is to be built. If there are parts you do not
understand, review them before continuing. If you still do
not understand certain operations after a review, don't worry.
You will be able to pick them up later, but it is still important
that you try and get everything to do what it is supposed to do
and what you want it to do. The next chapter will take us into
the realm of computer programming and increase your
understanding of your Commodore 128 considerably. If you
take it one step at a time, you will be amazed at the power you
have at your fingertips and how easy it is to program. Also,
we will be leaving the realm of calculator-like commands and
getting down to some honest-to-goodness computer work.
This is where the fun really begins.

•
Moving Along

Introduction

In the last chapter, we saw how to get started in executing
statements in both the Immediate and Program mode. From
now on we will concentrate our efforts on building from the
foundation set in Chapter 2 in the Program mode, tying
various statements together in a program. We will, however,
use the Immediate mode to provide simple examples and to
give you an idea of how a certain statement works. Also, as
we learn more and more statements, it would be a good idea if
you started saving the example programs on your disk or
cassette so that they can be used for review and a quick "look­
up" of examples. Use file names that you can recognize, such
as VARIABLE EXAMPLE or HOW TO SUBROUTINES,
and REMEMBER each file has to have a different name; so be
sure to number example file names(e.g. ARRAYS 1,
ARRAYS 2, etc.)

31

Variables

Perhaps the most single important computer function is in the
use of variables. Basically, a variable is a symbol that can
have more than a single value. If we say, for example, X =
10, we assign the value of 10 to the variable we call "X". Try
the following:

x = 10 <RETURN>
READY.
PRINT X <RETURN>

Your computer responded,

10

Now type in,

X=86.5 <RETURN>
READY.
PRINT X <RETURN>

This time you got,

86.5

Each time you assign a value to a variable, it will respond
with the last assigned value when your PRINT that variable.
Now try the following:

x = 10 <RETURN>
Y = 15 <RETURN>
PRINT x + Y <RETURN>

And your COMMOOORE-128 responded with,

25

As you can see, variables can be treated in the same way as
math problems using numbers. However, instead of using
the numbers, you use the variables. Now let's try a little
program using variables to calculate the area of a circle.

10 SCNCLR

32

20 PI =1t

30 REM USE THE "PI" CHARACTER RIGHT NEXT
TO THE 'RESTORE' KEY.

40 R = 15 :
50 REM R IS THE RADIUS OF OUR CIRCLE
60 PRINT PI * (R * R) :
70 REM LINE 60 GIVES US THE SQUARE OF PI

TIMES THE RADIUS
80 END

When you RUN the program, you will get the area of a circle
with a radius of 15. If you change the value of "R" in line 40,
it is a simple matter to quickly calculate the area of any circle
you want! Since our example "squares" a result, why don't
we use our exponential sign "i". Change line 40 to read:

40 PRINT PI * (R i 2) : REM SAME KEY AS
THE "PI" SIGN BUT YOU DON'T SHIFT TO

PRINT IT.

That saves typing, doesn't it? RUN the program again and
see if you get the same results. You should. Also, change
the value of R to see the different areas of circles.

Variable Names

When you name a variable, the computer only looks at the
fIrst two characters. For example, if you name a variable
NUMBER, all your computer is interested in is NV. Try the
following:

NAUGHTY = 44
PRINT NA

You got 44 even though you only entered the first two
characters of the variable you called NAUGHTY. Now try
this next one:

NUMBER = 1986
PRINT NUDE

The value 1986 is printed because the only characters of
interest to the computer are still the first two; so even if you
undress NUMBER you still get 1986! Now it may seem the
best thing to do is to use variable names with only two

33

characters, and while you're getting used to variables, that's
probably not a bad idea. However, as you get into more and
more sophisticated programs, it helps to use variable names
that are descriptive. For example, the following program uses
MEAN as a descriptive variable name:

10 SCNCLR

20 A = 15 : B = 23 : C = 38
30 MEAN = (A + B + C) / 3
40 PRINT MEAN

50 END

If the above program were a hundred or more lines long, you
would know what the variable MEAN does - it calculates a
"mean." Now you'd have to be careful not to have another
variable named MEATBALL or some other name beginning
with "ME", but it would certainly make it easier to understand
what it does. Other considerations in naming variables include
not using "reserved words" (i.e. programming statements) or
variables, and beginning variable names with a letter. There
are only 8 reserved variables, DS,DS$,ER,ERR$,EL,TI,
TI$ and ST. Furthermore, all words used as program
statements are also reserved. Let's look at some examples of
what is and what is not a valid variable name:

PRINT = 987 (Invalid name since PRINT is a reserved
word.)

Rl = 3 21 (Valid name since fIrst character is a letter.)
1R = 55 (Invalid since frrst character is not a letter.)
FORT = 222 (Invalid since variable name contains

reserved word FOR.)
PR = 99 (Valid name, for even though reserved word

PRINT begins with PR, only part of the reserved word
is used in variable name.)

TO = 983 (Invalid name since TO is a reserved 2 character
word.)

TIE = 99999999 (Invalid since 11 is a reserved variable
for time.)

I LOVEAP ARADE = 1 0 (Valid name, but really dumb.)

It is also possible to give values to variables with other
variables or a combination of variables and numbers. In our
example with the variable MEAN we defined it with other
variables. Here are some more examples:

34

T = A * (B + C)
N = N + 1
SUM = X + Y + Z

Types of Variables

Real Variables. So far we've only used "real" or "floating
point" variables in our examples. Any variable that begins
with a capital letter and does not end with a dollar sign ($) or
percentage sign (%) is a real variable. The value for a real
variable can be from + or -2.93873588E-39 to + or -
1.70141183E+38. The "E" is the scientific notation for very
big numbers. For the time being, don't worry about it, but if
you get a result with such a letter in a numeric result, get in
touch with a math instructor. At this juncture, figure you can
enter numbers in their standard format from 0.01 to
999,999,999. (If your checkbook debit or income tax
payments have a scientific notation in them, leave the
country.) Think of real variables as being able to hold just
about any number you would need along with the decimal
fractions.

Integer Variables. Integer variables contain only "integer"
or "whole" numbers - ones without fractions. The following
are some examples:

AB% = 345
K% = R% + N%
ADD% = ADD% + NUM%
WXY% = 88 + LR%

The values of integer variables can range from - 32767 to +
32767, and, like real variables, only the first two characters
are read. However, the "%" is always read, no matter how
many characters are used. So, a variable named W A % is the
same as W AX%. Also, a variable named ABC is different
from one named ABC%; therefore, both variables could be
used in the same program and each be considered unique. As
they have a lower range than real variables, integer variables
have limited applications; however, integer variables take up
less memory and execute faster than real variables and so they
have many useful applications. They can be used in
mathematical operations in the same way as are real variables,
but since they do not store fractions, operations using division

35

and similar fraction operations must be done with care. Try
some of the following operations from the Immediate mode to
see how they work:

A% = 15 : B% = 21 : C% B% + A%
PRINT C% <FlE~>
36
LL% = 17 : JJ% = LL% / 5
PRINT JJ% <FlE~>
3
Z% = -11 : XY% = Z% + 51
PRINT XY% <FlE~>
40

String Variables. String variables are extremely useful in
formatting what you will see on the screen, and like real and
integer variables, they are sent to the screen by the PRINT
statement. However, rather than printing only numbers,
string variables send all kinds of characters, called "strings",
to the screen. String variables are indicated by a dollar sign
($) on the end of a variable. For example, A$, BAD$, G$,
and PULL$ are all legitimate string variables. (In computer
parlance, we use the term "string" for the dollar sign. Thus,
our examples would be called "A string", "BAD string", etc.)
String variables are defined by placing the "string" in
quotation marks, just as we did with other messages we
printed out. Let's try out a few examples from the Immediate
mode:

ABC$ = "ABC"
PRINT ABC$ <FlE~>
G$ = "BURLESQUE"
PRINT G$ <RE~>
KAT$ ="CAT"
PRINT KAT$ <FlE~>
NUMBER$ = "123456789"
PRINT NUMBER$ <FlE~>
B1$ = "5 + 10 + 20"
PRINT B1$ <FlE~>

In the same way that real and integer variables only use the
first two characters, a string variable must begin with a letter
and use non-reserved words. More importantly, you
probably noticed in our examples that numbers in string
variables are not treated as numbers, but rather as "words" or

36

"messages." For example, you may have noticed that when
you PRINTed BI$, instead of printing out "35" (the sum of
5, 10 and 20), Bl$ printed out exactly what you put in
quotes, 5 + 10 + 20. Do not attempt to do math with string
variables. (In later chapters, we'll see some tricks to convert
string variables to numeric -real or integer- variables, but for
now just treat them as messages.)

Let's put all of our accumulated knowledge together and write
a program that uses variables. We will start a little program
that will allow you to subtract a check from your check book
and print the amount. This program will be the beginning of
something we will later develop to give you a handy little
program with which to do check book balancing.

10 SCNCLR
20 BALANCE =1234.56
30 REM ANY BALANCE (BA) IS A REAL
VARIABLE
40 CHECK = 29.95
50 REM WHAT YOU PAID FOR SOME SOFTWARE
55 REM CHECK (CH) IS A REAL VARIABLE.
60 B$ = "YOUR BEGINNING BALANCE IS $"
70 C$ = "YOUR CHECK IS FOR $"
80 NB$ = "YOUR NEW BALANCE IS $"
90 REM B$, C$ AND NB$ ARE STRING
VARIABLES
100 PRINT B$;BALANCE
110 PRINT C$;CHECK
120 N = BALANCE - CHECK
130 PRINT NB$; N
140 END

Since this is a fairly long program for this stage of the game,
make sure you put in everything correctly. For the computer,
it is critical that you distinguish between commas, semi­
colons, periods, etc. Also, save it to disk. To play with it,
change the values in lines 20 and 40. Let's quickly review
what we have done.

STEP 1. First we defined the real variables "BALANCE"
and "CHECK" (which your COMMOOORE-128 read as BA
and CH since it only cares about the first two characters.)

STEP 2. Then we defmed string variables B$, C$, and

37

NB$ to use as labels in screen formatting.

STEP 3. Finally, we printed out all of our information using
our variables, with one new variable, "N" defmed as the
difference between BALANCE and CHECK.

Note how we formatted the "OUTPUT" (what you see on
your screen) of our PRINT statements. The semi-colon ";"
between the variables accomplished two things:

(1) it told the computer where one variable ended and the next
began,and

(2) it told the computer to PRINT the second variable right
after the fIrst one.

Thus, it took the string variable NB$

YOUR NEW BALANCE IS $1

and stuck the value of the real variable N right after the dollar
sign (exactly where we placed the pound sign #). Later we
will go more into the formatting of OUTPUT, but for now
let's take a quick look at using punctuation in formatting text.
We will use the comma "," and semi-colon ";" and "new line"
to illustrate basic formatting. Put in the following little
program:

NEW <RETURN>
10 SCNCLR
20 A$ ="HERE" : B$="THERE" : C$= "WHERE"
30 PRINT A$;: PRINT B$;: PRINT C$;: REM

SEMI-COLONS
40 PRINT
50 PRINT A$,: PRINT B$,: PRINT C$,: REM

COMMAS
60 PRINT
70 REM A 'PRINT' BY ITSELF GIVES A VERT­

ICAL 'SPACE' IN FORMATTING
80 PRINT A$: PRINT B$: PRINT C$: REM

'NEW LINES'
90 END

Now RUN the program. As you should see, the little
differences in lines 30, 40, and 50 made big differences on
the screen. The fIrst set is all crammed together, the second

38

set is spaced evenly across the screen, and the third set is
stacked one on top of the other. As we saw in the previous
program, semi-colons put numbers and strings right next to
one another. However, using commas after a PRINTed
variable will space output in groups of four across the screen,
and using "new lines" in the form of colons or new line
numbers will make the output start on a new line. A PRINT
statement all by itself will put a vertical "linefeed" between
statements. Try the following little program to see how
PRINT statements all by themselves can be used.

NEW <RETURN>
10 SCNCLR
20 PRINT "WHENEVER YOU PUT IN A PRINT

STATEMENT";
25 REM NOTE PLACEMENT OF SEMI-COLON
30 PRINT " ALL BY ITSELF, IT GIVES A

'LINEFEED' . "
40 PRINT
50 PRINT "SEE WHAT I MEAN?"
60 END

Play with commas, semi-colons, and "new lines" with
variables and string variables until you get the hang of it.
They are very important and are the source of program
"bugs."

=Bugs and Bombs=

We've mentioned "bugs" and "bombs" in programs but never
really explained what they meant. "Bugs" are simply errors in
programs that either create ?SYNTAX ERRORs or prevent
your program from doing what you want it to do.
"Debugging" is the process of renwving "bugs." "Bombing"
is what your program does when it encounters a "bug." This
is all computer lingo, and if you use it in your conversations,
people will think you really know a lot about computers or
have a bug in your personality.

Input and Output (I/O)

Input and output, often referred to as 110, are ways of putting
things into your computer and getting it out. Usually we put

39

IN information from the keyboard, save it to disk or tape, and
then later put it in from the disk drive or cassette recorder.
When we want information OUT of the computer, we want it
to go to our screen or printer. This is what 110 means. So
far, we have entered information IN the computer from the
keyboard either in the Program or in the Immediate mode.
Using the PRINT statement, we have sent information OUT
to the screen. However, there are other ways we can INPUT
information with a combination of programming and
keyboard commands. Let's look at some of these ways and
make our CHECKBOOK program a lot simpler to use.

INPUT

The INPUT statement is placed in a program and expects
some kind of response from the keyboard and then a
RETURN. (A RETURN alone will also work, but the
response is read as "".) It must be part of a program and
cannot be used from the Immediate mode. (If attempted from
the Immediate mode, there will be an ?ILLEGAL DIRECT
ERROR message.) Let's look at a simple example:

NEW <RETURN>
10 SCNCLR
20 INPUT X
25 REM 'X, IS A NUMERIC VARIABLE SO ENTER A
NUMBER
30 PRINT X
40 END

RUN the program and your screen will go blank and a "?"
along with a blinking cursor will sit there until you enter a
number and then the computer will PRINT the number you
just entered. Really interesting, huh? Let's try INPUTing the
same information but using a slightly different format. The
nice thing about INPUT statements is that they have some of
the same features as PRINT statements for getting messages
on the screen. Look at the following program:

40

NEW <RETURN>
10 SCNCLR
20 INPUT "ENTER YOUR AGE "; X
30 SCNCLR : PRINT : PRINT : PRINT
40 PRINT "YOUR AGE IS "; X

Now RUN the program; you will see that the presentation is a
little more interesting. Also notice we did not put an END
statement at the end of the program. In COMMODORE-128
it is not necessary to enter an END statement, but it is usually
a good idea to do so. As we get into more advanced topics,
we will see that our program can jump around, and the place
we want it to END will be in the middle, and we will need an
END statement so that it will not crash into an area we don't
want it to go. So, while an END statement really has not been
necessary up to now, it is nevertheless a good habit to
develop. Let's soup up our program a little more with the
INPUT statement.

NEW <RETURN>
10 SCNCLR
20 INPUT "ENTER YOUR NAME -> "; NA$
30 PRINT
40 INPUT "ENTER YOUR AGE -> "; AG%
50 PRINT
60 INPUT "PRESS <RETURN> TO CONTINUE "; RT$
70 SCNCLR: ? : ? : ? : ? : ? :
75 REM USING "?" AS SUBSTITUTES FOR PRINT
80 PRINT NA$; " IS "; AG% ; " YEARS OLD. "
85 REM BE CAREFUL WHERE YOU PUT YOUR
87 REM QUOTE MARKS & SEMI-COLONS IN LINE 80
90 END

Now we're getting somewhere. You can enter infonnation as
numeric or string variables and the OUTPUT is formatted so
you know what's going on. As your programs become larger
and more complicated, it is very important to connect your
string variables and numeric variables in such a way that it is
easy to see what the numbers on the screen mean. Let's face
it, a computer wouldn't be very helpful if it filled the screen
with numbers, and you did not know what they meant! Line
60 is the fonnat for a pause in your program. RT$ doesn't
hold any information, but since INPUT statements expect
something from the keyboard and a variable, RT$ (for
RETURN) is as good as any.

GETKEY and GETing Information

The GETKEY and GET statements are something like the
INPUT statement, except they is executed as soon as you hit a
key. GETKEY is the easiest to use since you just have to
key in GETKEY and a variable. Using a string variable, the

"'''W/P!/"." , ~·~n"'E'i3llii!i'2i0W 41

user can hit any key.

NEW <RETURN>
10 SCNCLR
20 PRINT "HIT ANY KEY, JACK"
30 GETKEY A$
40 PRINT "YOU HIT=>";A$

To see how GET works try the following program. You
should note that to be of use, GET must be put into a little
"loop" routine.

NEW <RETURN>
10 SCNCLR
20 ? : ? : ? : ?
30 PRINT" ENTER A NUMBER FROM 1-9 n;

40 GET N: IF N < 1 OR N > 9 THEN 40
45 REM NOTE FORMAT IN LINE 40
50 ? : ?
60 PRINT" HIT ANY KEY TO CONTINUE n;
70 GET K$: IF K$ = nn THEN 70
75 REM GETKEY WOULD BE SIMPLER IN LINE 70
80 SCNCLR: ? : ? : ? : ?
90 PRINT "YOUR NUMBER IS -->" ; N
100 END

Notice that as soon as you hit a key, the GET statement is
executed. With an INPUT statement you first enter
information and then press the RETURN key before the
program executes. The good thing about the GET statement
is that it is a faster way to enter and execute from the
keyboard, but the problem is that you can only enter a single
character before the program takes off again. If you press the
wrong key there is no chance to correct the error before
pressing the RETURN key as there is with the INPUT
statement. (Using more sophisticated routines, we can GET
more than a single character, but we will GET to that later.)

READing In DATA

A third way to enter data into a program is with READ and
DATA statements. However, instead of entering the data
through the keyboard, DATA in one part of the program is
READ in from another part. Each READ statement looks at
elements in DATA statements sequentially. The READ
statement is associated with a variable which looks at the next

42

DATA statement and places the numeric value or string in the
variable. Let's look at the following example:

NEW <RETURN>
10 SCNCLR
20 READ NA$ REM READS NAME
30 READ OC$ REM READS OCCUPATION
40 READ SN REM READS STREET NUMBER
50 READ ST$ REM READS STREET NAME
60 READ CT$ REM READS CITY
70 READ SA$ REM READS STATE
80 READ ZIP REM READS ZIP CODE
90 PRINT : PRINT : PRINT
100 REM BEGIN PRINTING OUT WHAT 'READ'
102 REM READ IN. (BE CAREFUL TO PUT IN
104 REN EVERYTHING EXACTLY AS IT IS LISTED.)
11 0 PRINT NA$
120 PRINT OC$
130 PRINT SN; " " ; ST$
140 PRINT CT$; ",
150 END

" . , SA$;" "; ZIP

1000 DATA SHIRLEY SOFT, PROGRAMMER, 8502,
DISK DRIVE

1010 DATA SILICONE, SOUTH DAKOTA,49152

In the DATA statements there is a comma separating the
various elements, unless the DATA statement is at the end of a
line. If you have one of the elements out of place or omit a
comma, strange things can happen. For example if the READ
statement is expecting a numeric variable (such as the street
address) and runs into a string (such as the street name) you
will get an error message. Think of the DATA statements as a
stack of strings and numbers. Each time a READ statement is
encountered in the program the flrst element of the DATA is
removed from the stack. The next READ statement looks at
the element on top of the stack, moving from left to right. Go
ahead and SAVE this program and let's put an error in it.
(DSA VE it first, though, so you will have a correct listing of
how READ and DATA statements work.)

LIST the program to make sure you have it in memory and
enter the following line:

85 READ EX$

43

Now RUN the program and you should get an ?OUT OF
DATA ERROR IN 85. The error occurred because you have
a READ statement without enough DATA statements (or
elements); so, be sure that 1) there are enough elements in
your DATA statements to take care of your READ statements,
and 2) the variables in your READ statements are compatible
with the elements of the DATA statements. (i.e. Your numeric
variables read numbers and string variables read strings.) To
repair your program, simply type in:

1020 DATA WORD

This will give it something to READ. (Of course you could
have DELETEd line 85). If an element is a DATA statement
(and is enclosed in quotation marks), all the characters inside
the quotes are considered to be a single string element For
example, make the following changes in your program and
RUN it.

145 PRINT EX$
1020 DATA "10 DOWNING ST, LONDON, 45,
ENGLAND"

Both numbers and commas were happily accepted by a READ
statement with a string variable since they were all enclosed in
quotation marks. Now remove the quote marks and RUN it
again. This time it only printed up to the first comma, '10
DOWNING ST' but the string variable EX$ had no problem
accepting a numeric character! (However, since it read the
'10' as a string, it cannot be used in a mathematical
operation.) Experiment with different elements in the DATA
statements to see what happens. Also, just for fun, put the
DATA statements at different places in the program. You will
quickly find that they can go anywhere and are READ in the
order of placement in the program.

Loops

The loop structure in computer programming is a real time­
saver. It allows your program to go through a procedure
several times while only entering the procedure in the program
once. Your Commodore 128 has two loop structures, the
FORINEXT/STEP loop with a built-in increment/decrement,
and the DOIUNTIL(WHILE)/LOOP. The FORINEXT loop
is used with a known number of passes through a loop, and
the DOIUNTILILOOP structure is best used when a procedure

44

is to be repeated an unknown number of times.

FOR/NEXT/STEP. The FORINEXT loop is one of the
most useful operations in BASIC programming. It allows the
user to instruct the computer to go through a determined
number of steps, at variable increments if desired, and execute
them until the total number of steps is completed. Let's look
at a simple example to get started.

NEW <RETURN>
10 SCNCLR
20 NA$ = "<YOUR NAME>"
30 FOR X = 1 TO 10 : REM BEGINNING OF LOOP
40 PRINT NA$
50 NEXT X : REM LOOP TERMINAL
60 END

Now RUN the program and you will see your name printed
10 times along the left side of the screen. That's nice, but so
what? OK, not too impressive, but we will see how useful
this can be in a bit, but first let's look at another simple
illustration to show what's happening to "X" as the loop is
being executed.

NEW <RETURN>
10 SCNCLR
20 FOR X = 1 TO 10
30 PRINT X
40 NEXT X

As we can see when the program is RUN, the value of "X"
changes each time the program proceeds through the loop.
Think of a loop as a child on a merry-go-round. Each time

the merry-go-round completes a revolution, the child gets a
gold ring, beginning with one and ending, in our example,
with 10.

Having seen how loops function, let's do something practical
with a loop. We'll fix up our CHECK-BOOK program
we've been playing with. In our souped up CHECK BOOK
program, we are going to use variables in many ways. First,
our FORINEXT loop will use a variable. We'll use "X."
Second, we will use a variable to indicate the number of loops
to be executed. We will use N%, an integer variable. Third,
we will use variables for the balance, the amount of the check,
and the new balance. This program is going to be a little

45

longer; so be sure to DSA VE it to disk every 5 lines or so.
For cassette, SA VE it about every 10 lines.

NEW <RETURN>
10 SCNCLR
20 CB$ = "CHECK BOOK"
30 PRINT : PRINT : PRINT CB$
40 INPUT "HOW MANY CHECKS? ->" ; N%
50 INPUT "WHAT IS YOUR CURRENT BALANCE? ->"

;BA
60 REM BEGIN LOOP
70 FOR X = 1 TO N%
80 PRINT "YOUR BALANCE IS NOW $" ;BA
90 PRINT" AMOUNT OF CHECK I";X; "-> ";
100 INPUT CK : REM VARIABLE FOR CHECK
110 BA = BA - CK : REM RUNNING BALANCE
120 NEXT X : REM TOP OF LOOP
130 SCNCLR: REM CLEAR SCREEN WHEN ALL CHECKS

ARE ENTERED
140 PRINT : PRINT : PRINT
150 PRINT "YOU NOW HAVE $"; BA ; " IN YOUR

ACCOUNT"
160 PRINT : PRINT "THANK YOU AND COME AGAIN"
170 END

Our check book program is coming along, making it easier to
use, and that is the purpose of computers. Now, let's look at
something else with loops. NESTED LOOPS. With certain
applications, it is going to be necessary have one or more
FORINEXT loops working inside one another. Let's look at
a simple application. Suppose you had two teams with 10
members on each team. You want to make a team roster
indicating the team number (#1 or #2) and member number
(#1 through #10). Using a nested loop, we can do this in the
following program:

46

NEW <RETURN>
10 SCNCLR
20 FOR T = 1 TO 2 : REM T FOR TEAM I
30 FOR M = 1 TO 10 REM M FOR MEMBER I
40 PRINT "TEAM I" ; T ; "PLAYER Itt; M
50 NEXT M
60 NEXT T
70 END

In using nested loops, it is important to keep the loops
straight. The innermost loop (the "M loop" in our example)
must not have any other FOR or NEXT statement inside of it.
Think of nested loops as a series of fish eating one another,
the largest fish's mouth encompassing the next largest and so
forth on down to the smallest fish.

Look at the following structure of nested loops:

FOR A = 1 TO N
FORB = 1 TO N

FOR C = 1 TO N
FOR D = 1 TO N
NEXTD

NEXTC
NEXTB

NEXT A

Note how each loop begins (a FOR statement is executed) and
is terminated (encounters a NEXT statement) in a "nested"
sequence. If you have ever stacked a set of different sized
cooking bowls, each one fits inside the other; that is because
the outer edge of one is larger than the next one. Likewise, in
nested loops, the "edge" of each loop is "larger" than the one
inside it and "smaller" than the one it is inside. STEPPING
FORWARD AND BACKWARDS. Loops can go one step at
a time, as we have been using, or they can step at different
increments. For example, the following program "steps" by
10.

NEW <RETURN>
10 SCNCLR
20 FOR X = 10 TO 100 STEP 10
30 PRINT X
40 NEXT X

This allows you to increment your count by whatever you
want. You can even use variables or anything else that has a
numeric value. For example,

NEW <RETURN>
10 SCNCLR
20 K = 5 : N = 25
30 FOR X = K TO N STEP K
40 PRINT X
50 NEXT

47

Go ahead and RUN the program. But WAIT!!, you say. In
line 50 you detect a BUG, a typo and big mistake. After the
word NEXT, there should be an "X" but there is none, right?
Well, actually, in COMMODORE-128 BASIC you really do
not need it, and you can save a little memory if you use
NEXT statements without the variable name. Even in nested
loops, as long as you put in enough NEXT statements, it is
possible to run your program without variable names after
NEXT statements. However, it is good programming
practice to use variable names after NEXT statements,
especially in nested loops so that you can keep everything
straight. It is also possible to go backwards. Try this
program:

NEW <RETURN>
10 FOR X = 4 TO 1 STEP -1
20 PRINT "FINISHING POSITION IN RACE =";X
30 NEXT X

As we get into more and more sophisticated (and useful)
programs, we will begin to see how all of these different
features of COMMODORE-128 BASIC are very useful.
Often, you may not see the practicality of a statement initially,
but when you need it later on, you will wonder how you
could program without it!

=Programming Taboo=

Don't jump out of FOR/NEXT loops. Sometimes
there will be occasions where you want to exit a FOR/NEXT
loop before the top of the loop. Usually, no harm will come
of it, but with longer and more complex programs, this will
definitely cause problems. If a loop must be left before the
end of a count, use the DO/WHILE or DO/UNTIL structure
instead of a FOR/NEXT.

DOIWHILE/LOOP and DO/UNTIL/LOOP. The
OO/LOOP waits either for a condition to begin or end.
Actually, the loop will wait UNTIL a condition is true or
WlllLE a condition is true. True and false are flagged by a
zero (0) if false and a minus one (-1) if true. In other words,
as long as a value is not zero, it is true. Let's look at a couple
of "adding machine" programs using these structures.

48

DO/WHILE

10 SCNCLR : A=1
20 DO WHILE A
25 REM BEGIN LOOP
30 INPUT "AMOUNT=>"; A
40 T=T+A
50 PRINT "RUNNING TOTAL=";T
60 LOOP : REM TOP OF LOOP
70 PRINT "THE END" : END

Notice that we had to fIrst "initialize" the variable 'A' in line
10 with some value greater than zero. The loop begins on line
20 with the condition that WHITE A is greater than 0, keep
going through the process from lines 30-50. When a zero is
entered when prompted for the AMOUNT, the program exits
the loop. In line 20 we could have had it read DO WHILE A
<> 0, but this way saves a couple of steps.

DO/UNTIL

To see how the OO/UNTIL structure works, just change line
20 to read:

20 DO UNTIL A=O

The only difference between the two structures is that while
one waits UNTIL a zero is found (false) while the other loops
WHITE a zero is not present (true.) Depending on the
circumstances, one or the other will be preferable.

=In Case You Wondered::

You may have noticed that the lines inside the loops were
indented. If you tried that on your COMMODORE-128 you
probably found that as soon as you liSTed your program, all
the indentations were gone. Unfortunately, that will happen,
and without special utilities, there's nothing you can do about
it. However, don't worry about it. It is a programming
convention for clarity to indent or "tab" loops to make it easier
to understand what the program is doing, but they do not
affect your program at all.

Counters. Often you will want to count the number of times
a loop is executed and keep a record of it in your program for

49

later use. For example, if you run a program that loops with a
STEP of 3, you may not know exactly how many times the
loop will execute. To find out, programmers use "counters",
variables that are incremented, usually by + 1, each time a loop
is executed. The following program illustrates the use of a
counter:

10 SCNCLR
20 FOR X=5 TO 50 STEP 5
30 PRINT "LOOP VALUE="iX
40 N=N+1
50 NEXT X
60 PRINT "YOUR LOOP EXECUTED"iNi"TIMES"

The first time the loop was entered, the value of "N" was 0,
but when the program got to line 40, the value of 1 was added
to N to make it 1 (i.e. 0 + 1 = 1). The second time through
the loop, the value of N began at 1, then 1 was added, and at
the top of the loop, line 50, the value of N was 2. This went
on until the program exited the loop. Then, after all the
looping was finished, presto!, your N told you how many
times the loop was executed. Of course, counters are not
restricted to counting loops, and they can be incremented by
any value, including other variables, you need. For example,
change line 40 to read:

40 N = N + (X * 4)

RUN your program again and your "counter total" will be a
good deal higher.

Using the OO/LOOP structure, counters can keep track of
how many times a procedure was used. Since there is a
wholly unknown number of times such a loop will be
performed, counters are even more useful in the DO/LOOP
programs. The following illustrates this:

50

10 SCNCLR
20 DO WHILE A$ <> "END"
30 INPUT "NAME PLEASE"iA$
40 C=C+1 REM COUNTER
50 PRINT: PRINT "NAMEf"iCi"IS "iA$
60 LOOP

Summary

This chapter has begun to show you the power of your
computer, and we have really began programming. One of the
most important concepts we have covered is that of the
"variable". The significant feature of variables is that they
"vary" (change depending on what your program does). This
is true not only with numeric variables, but also with string
variables. The various input commands show how we enter
values or strings into variables depending on what we want
the computer to compute for us. Finally, we have learned
how to loop. This allows us, with a minimal amount of
effort, to tell the computer to go through a process several
times with a single set of instructions. With loops, we can set
the parameters of an operation at any increment we want, and
then sit back and let our Commodore 128's go to work for us.
However, we have only just begun programming! In the next
chapter we will begin getting into more commands and
operations that allow us to delve deeper into the Commodore
128's capabilities and make our pro-gramming jobs easier.
The more commands we know, the less work it is to write a
program.

51

52

• Branching Out
To New Frontiers

Introduction

In this chapter we will begin exploring new programming
constructs that will geometrically increase your programming
ability. We will be examining some more sophisticated
techniques, but by taking each a step at a time, you will begin
using them with ease. Later, when you are developing your
own programs, be bold and try out new statements. One
problem new programmers have is a tendency to stick with
the simple statements they have learned to get a job done.
After all, why use "complicated" statements to do what
simpler ones can do. Well, the answer to that has to do with
simplicity. If one" complicated" statement can do the work of
10 "simple" statements, which one is actually simpler? As
you get into more and more sophisticated programming
applications, your programs can become longer and subject to
more bugs. The more statements you have to sift through, the
more difficult it is to find the bugs; therefore, while it is
perfectly OK to write a long program using a lot of simple
statements while you're learning, begin thinking about short­
cuts through the use of the more advanced statements.

53

Related to this issue of maxuruzmg your knowledge of
different statements is that of letting the computer perform the
computing. This may sound strange at first, but often novices
will figure everything out for the computer and use it as a
glorified calculator. In the last chapter you may remember we
set up a counter to count the times a loop was executed when
we used a STEP 3 loop. We could have figured out how
many loops were executed instead ofletting the computer do it
with the counter, but that would have defeated the purpose of
programming! So, as you learn new statements, see how
they can be used to perform the calculations you had to work
out yourself.

Branching

So far all of our programs have gone straight from the top to
the bottom with the exception of loops. However, if our
COMMOOORE-128 is to do some real decision making, we
must have some way of giving it options. When a program
leaves a straight path, it is referred to as either "looping" or
"branching." We already know the purpose of a loop, but
what is a branch? Well, using the IFrrHEN/ELSE and
GOTO statements, we will see. (In fact, with the GET
statement in the last chapter, we sneaked these statements in.)
Consider the following program: (NOTE: By now you should
know enough to clear memory with a NEW statement; so I
won't keep on insulting your intelligence by putting them at
the beginning of each program.)

10 SCNCLR
20 PRINT "CHOOSE ONE OF THE FOLLOWING BY
NUMBER"
30 PRINT
40 PRINT "1. BANANAS"
50 PRINT "2. ORANGES"
60 PRINT "3. PEACHES"
70 PRINT "4. WATERMELONS"
80 PRINT
90 INPUT "WHICH? Hi X
100 SCNCLR
110 IF X = 1 THEN GOTO 200
120 IF X = 2 THEN GOTO 300
130 IF X = 3 THEN GOTO 400
140 IF X = 4 THEN GOTO 500
150 GOTO 10
155 REM LINE 150 IS A 'TRAP' TO MAKE SURE

54

157 REM THE USER CHOOSES 1, 2, 3, OR 4
200 REM ********
210 REM BRANCHES
220 REM ********
230 PRINT "BANANAS" END
300 PRINT "ORANGES" END
400 PRINT "PEACHES" END
500 PRINT "WATERMELONS" : END

As you can see, your computer "branched" to the appropriate
place, did what it was told and ENDed. Not very inspiring I
admit, but it is a clear example. Now, let's try something a
little more practical for your kids to play with in their math
homework. While we're at it, we will introduce a new
statement, SLEEP. It provides a pause in your program for
the number of seconds following the SLEEP statement. Our
example uses a two second pause.

10 SCNCLR
20 AG$=" ADDITION GAME " . PRINT AG$
30 PRINT : PRINT
40 INPUT "ENTER FIRST NUMBER -->" A
50 PRINT
60 INPUT "ENTER SECOND NUMBER-->" B
70 PRINT
80 PRINT "WHAT IS "; A ; "+" ; B ; : INPUT C
90 IF C = A + B THEN GOTO 200
100 PRINT : PRINT "THAT'S NOT QUITE IT. TRY
AGAIN." : PRINT
110 SLEEP 2 : REM TWO SECOND PAUSE
110 GOTO 80
200 REM **************
210 REM CORRECT ANSWER
220 REM **************
230 PRINT" THAT'S RIGHT! VERY GOOD"
240 PRINT
250 PRINT "WOULD YOU LIKE TO DO MORE?

(YIN):";
260 GETKEY AN$
270 IF AN$ = "Y" THENSCNCLR : GOTO 30
280 SCNCLR : PRINT : PRINT : PRINT
290 PRINT "HOPE TO SEE YOU AGAIN SOON" : END

As you can see, the more statements we learn, the more fun

55

we can have. Just for fun, change the program so that it will
handle multiplication, division, and subtraction.

=Wbat's In A Name ?=

Kids (oj all ages) like to have their names displayed. See if
you can change the above program so that it asks the child's
name; then when the program responds with either a
correction or affirmation command, it mentions the child's
name. (e.g. THAT'S RIGHT! VERY GOOD, SAM). Use
"NA$" as the name variable.

Let's look carefully at our program to learn something about
IFffHEN statements. First, note in line 270, the branch is to
clear the screen (SCNCLR) if AN$ ="Y". If any other
response is encountered it ends the program. You may ask
why the program did not branch to line 30 regardless of the
response since the "GOTO 30" statement is after a colon,
making it a new line. Good point. The reason for that is after
an IF statement, when the response or condition is null, the
program immediately drops to the next LINE NUMBER.
That is, any statements after a colon in a line beginning with
an IF statement will only be executed if the condition of the IF
statement is met. Secondly, the condition of AN$ is queried
as being a "Y" and not simply a Y without quotes. Since the
user enters a Y and not a "Y", we assume that the program
will accept a Y, but remember AN$ is a "string" and not a
numeric variable. Therefore in the setting of the conditional,
we must remember what kind of variable we are using. On
the other hand, if we used a numeric variable, such as AN or
AN%, we could have entered a line such as,

IF AN = 1 THEN

It is also possible to have an alternative branch with ELSE.
Using ELSE is an exception to the rule that if the 'true'
condition of an IF is not met, the program drops to the next
line. Thus, if you want one of two branches, you can place a
colon (:) and then ELSE for another branch or statement. For
example, look at the following program.

10 SCNCLR
20 INPUT "CAN YOU SAY 'YEAH''';Y$
30 IF Y$="YEAH" THEN 100 : ELSE GOTO 200

56

40 END
100 REM ***********
110 REM BRANCH THEN
120 REM ***********
130 PRINT "YEAH, YEAH, YEAH"
140 END
200 REM ***********
210 REM BRANCH ELSE
220 REM ***********
230 PRINT "WHAT'D YOU SAY THAT FOR'?"
240 END

Of course, ELSE does not have to branch to a new line, but
can execute a statment on its own. For example,

10 SCNCLR
20 PRINT "ENTER 1 OR ELSE!"
30 GETKEY A
40 IF A=l THEN PRINT "ONE"

ONE"

RelationaIs

ELSE PRINT "NOT

So far we have only used "=" to determine whether or not our
program should branch. However, there are other states,
referred to as "relationals", that we can also query. The
following is a complete list of the relationals we can employ:

= Equal to
< Less than
> Greater than
<> Not equal to
>= Greater than or equal to
<= Less than or equal to

Now let's play with some of these, and then we'll examine
them for their full power. Here are some quickie programs:

10 SCNCLR
20 INPUT "NUMBER l-->"jA
30 INPUT "NUMBER 2-->";B
40 IF A > B THEN GOTO 100
50 IF A < B THEN GOTO 200
60 IF A = B THEN GOTO 300

57

100 PRINT "NUMBER 1 IS GREATER THAN NUMBER 2
: END
200 PRINT "NUMBER 1 IS LESS THAN NUMBER 2"
: END
300 PRINT "NUMBER 1 IS EQUAL TO NUMBER 2"

10 SCNCLR
20 PRINT "DO YOU WANT TO CONTINUE? (Y/N)";
30 GETKEY AN$
40 IF AN$ <> "Y" THEN END : ELSE GOTO 20

10 SCNCLR
20 INPUT "HOW OLD ARE YOU,? "; AG%
30 IF AG% >= 21 THEN GOTO 100
40 SCNCLR : PRINT
50 PRINT "SORRY, YOU'VE GOT TO BE 21 OR
OLDER TO COME IN HERE!"
60 END
100 REM **********
110 REM OLD ENOUGH
120 REM **********
130 SCNCLR : PRINT : PRINT "DO YOU COME HERE
OFTEN'?"
140 PRINT "I'M A VIRGO. WHAT'S YOUR SIGN'?"

Ok, you have the idea how relationals can be used with
IFrrHENlELSE statements; note they work with strings as
well as numeric variables. However, there is another way to
use relationals. Try the following from the Immediate mode:

A = 10 : B = 20 : PRINT A = B

Your computer responded with a 0, right? This is a logical
operation. If a condition is false, your COMMODORE-128
responds with a 0, but if it is true, it responds with a-I.
Now try the following little program.

10 SCNCLR
20 A = 10
30 B = 20
40 C = A > B
50 PRINT C

58

When you RUN the program, you again get a O. This is
because the variable C was defined as A being greater than B.
Since A was less than B the variable C was 0 or "false."
Now, let's take it a step further:

10 SCNCLR
20 A = 10
30 B = 20
40 C = A > B
50 IF C = 0 THEN PRINT "A IS LESS THAN B"
: END
60 IF C = -1 THEN PRINT "A IS GREATER THAN B"

Later, we will see further applications of these logical
operations of the COMMODORE-I28. For now, though, it is
irnoortant to understand that a true condition is represented by
a t'_I" and a false condition by a "0". AND/OR/NOT
Sometimes we need to set up more than a single relational.
Suppose, for example, that you are organizing your finances
into 3 categories of expenses: (1) Under $10; (2) between $10
and $100 and 3) over $100. With our relationals it would be
simple to compare input under $10 and over $100. But what
if we wanted to do something in between. In this case we
might have some difficulty without added statements. The
AND, OR and NOT statements allow us to set ranges with
our relationals.

AND If all conditions are met then true.
OR If one condition is met then true.
NOT If condition is not met then true.

For example:

10 SCNCLR
20 INPUT "ENTER AMOUNT -->$"; A
30 IF A < 10 THEN 100
40 IF A > 10 AND A <= 100 THEN 200
50 IF A > 100 THEN 300
100 REM ****************
110 REM LESS THAN BRANCH
120 REM ****************
130 PRINT " PETTY CASH" GOTO 400
200 REM *****************
210 REM IN BETWEEN BRANCH

59

220 REM *****************
230 PRINT " GENERAL EXPENSES" GOTO 400
300 REM *******************
310 REM GREATER THAN BRANCH
320 REM *******************
330 PRINT" BIG BUCKS "
400 REM *****************
410 REM WHAT NEXT? BRANCH
420 REM *****************
430 PRINT" DO YOU WISH TO CONTINUE? ";
440 GETKEY AN$
450 IF AN$ < > "Y" AND AN$ < > "N" THEN PRINT
"ANSWER 'Y' OR 'N' PLEASE" : GOTO 400
460 IF AN$ = "Y" THEN 10
470 SCNCLR : PRINT "GOODBYE"

In line 40 we set the conditional branch to be BOTH greater
than 10 and equal to or less than 100. The variable" A" had to
meet both conditions to branch. Similarly, in line 420, using
the AND statement again, we made sure that the response had
to be either "Y" or "N". If you are very perceptive, you may
have asked yourself about some fishy format in the program.
There are conditional IFrrHEN lines that simply say THEN
100 and stuff like that. What's going on? Shouldn't there be
a GOTO statement there? Again, we have slipped in another
feature of COMMODORE-128 BASIC. When using
IFrrHEN statements, it is possible to drop the GOTO on a
branch and simply put in the line number. However, note that
we have used GOTO statements elsewhere in the program
where no conditional is used within the same line or within a
single set of colons. Until you become more familiar with
programming you might want to keep your GOTO statements
after IFffHEN statements, but they are not required. Another
question you may have had involves the AND statement in
line 420. In normal English if we say something is not "Y" or
"N" sometimes we mean that it must be one or the other,
exclusively. However, in programming, if we use OR, we
are telling the program to branch if either condition is met.
Thus, if we wrote line 420 as,

420 IF AN$ < > "Y" OR AN$ < > "N" THEN
PRINT "ANSWER 'Y' OR 'N' PLEASE " : GOTO 400

the program would have branched if AN$ was not equal to
EITHER "Y" or "N". Thus, for example, if we responded
with a "Y", that "Y" would have NOT been equal to "N" and

60

so the program would have branched to "ANSWER 'Y' OR
'N' PLEASE" - not what we intended. To check this, change
the AND to an OR in line 420 and RUN the program. Now,
let's use the OR and NOT statements in a program:

10 SCNCLR
20 READ A
30 READ B
40 READ C
50 DATA 10,20,30
60 IF A+B = C OR A<B OR A-B = C THEN 100
70 END
100 REM **************
110 REM IF ONE IS TRUE
120 REM **************
130 SCNCLR : PRINT "ONE OF 'EM MUST BE TRUE"

Looking at line 60 we can see that A - B does not equal C;
however, A + B does equal C and A is less than B. Using the
OR statement, only one statement has to be true to branch.
Now, let's try the following program:

10 SCNCLR
20 READ A : READ B READ C
30 DATA 10,20,30
40 Z = A - B = C
50 IF NOT Z THEN 100
60 END

100 REM **********
110 REM NOT BRANCH
120 REM "**********
130 PRINT "THAT'S RIGHT! A-B=C ISN'T RIGHT!"

As can be seen from the example, it is possible to use the
"negation" of a formula to calculate a branch condition. In
most cases, you will use < > (not equal) or the positive case,
but at other times it will be simpler to employ NOT.

Subroutines

Often in programming there is some operation you will want
your computer to perform at several different places in the
program. Now, you can repeat the instructions again and
again or use GOTO's all over the place to return to your

61

original spot after branching to the operation. On the other
hand, you can set up "subroutines" and jump to them using
GOSUB and get back to your starting point using the
RETURN statement. Up to a point the GOSUB statement
works pretty much like the GOTO statement since it sends
your program bouncing off to a line out of sequence. Also,
the RETURN statement is something like GOTO since it also
sends your program to an out-of-sequence line. However,
the GOSUBIRETURN pair is unique in what it does. Let's
take a look at a simple example to see how it works:

10 SCNCLR
20 A$ "HELLO": GOSUB 100
30 A$ = "HOW ARE YOU TODAY?" GOSUB 100
40 A$ = "I'M FINE" : GOSUB 100

50 END
100 REM ****************
110 REM PRINT SUBROUTINE
120 REM ****************
130 PRINT A$
140 RETURN

Our example shows that a GO SUB statement works exactly
like a statement on the line itself except that it is executed
elsewhere in the program. The RETURN statement brings it
back to the next statement after the GOSUB statement. Using
the GOSUBIRETURN pair it is much easier to weave in an
out of a program than using GOTO since the RETURN
automatically takes you back to the jump-off point. To better
illustrate the usefulness of GOSUB, let's change line 100 to
something more elaborate. Try the following. (Note: We will
be getting ahead of ourselves a bit with this example, but the
following is meant to illustrate something very useful in
GOSUB's.)

130 L = LEN (A$)/2 : PRINT TAB(20 - L) ; A$

Now when you RUN the program, all of your strings are
centered. As you can see, a single routine handled all of the
centering, and instead of having to rewrite the routine every
time you want a string centered all you had to do was to use a
GOSUB to line 100.

62

=Neatness Counts=

We really have not discussed the structure of programs too
much up to this point. In part, this is because we have not
really had the need to do so. However, as our instruction set
grows, so too does the possibility for errors, and by now if
you haven't made an error, you haven't been keying in these
programs! One way to minimize errors, especially using
GOSUB's, is to organize them into coherent "blocks."
Basically, a "block" is a subroutine within a range of lines.
For example, you might block your subroutines by 100's or
1000's, depending on how long the subroutines are. Thus,
you might have subroutines beginning at lines 500, 600 and
700. It doesn't matter if the subroutine is 1 line or 10 lines,
as long as it is confined to the block, it is easier to debug,
easier for others and you to understand what is happening in
the program, and in general a good programming practice.
We've used the stars (asterisks) and REM statements to
highlight our blocks.

Computed GOTO and GOSUB

Now we're going to get a little fancier, but in the long run, it
will result in clearer and simpler programming. As we have
seen, we can GOTO or GOSUB on a "conditional" (e.g. IF A
= 1 THEN GOTO 200). The easier way to make a
conditional jump is to use "computed" branches using the ON
statement For example,

10 SCNCLR
20 INPUT "ENTER A NUMBER FROM 1 TO 5 " ; A
30 IF A < 1 OR A > 5 THEN 20 : REM TRAP
40 ON A GOSUB 100,200,300,400,500 : REM
COMPUTED GOSUB
50 PRINT "DO YOU WISH TO CONTINUE? (YIN)"
60 GETKEY AN$
70 IF AN$ < > "Y" THEN END
80 GOTO 10
100 REM ***************
110 REM SUBROUTINE CITY
120 REM ***************
130 PRINT "ONE" : PRINT RETURN

63

200 PRINT "TWO" : PRINT : RETURN
300 PRINT "THREE" PRINT RETURN
400 PRINT "FOUR" : PRINT : RETURN
500 PRINT "FIVE" : PRINT : RETURN

The format for a computed GOSUB/GOTO is to enter a
variable following the ON command. The program will then
jump the number of" commas" to the appropriate line number.
If a 1 is entered, it takes the first line number, a 2, the second,
and so forth. It's a lot easier than entering,

70 IF A = 1 THEN GOSUB 100
80 IF A = 2 THEN GOSUB 200
etc.

However, it is necessary to use relatively small numbers in
the "ON" variable since there is a limited number of
subroutines. If your program is computing larger numbers,
all you have to do is to convert the larger numbers into smaller
ones by changing the variables. For example:

10 SCNCLR
20 INPUT "ENTER ANY NUMBER--> "; A
30 IF A < 100 THEN B = 1
40 IF A >= 100 AND A < 200 THEN B = 2
50 IF A >= 200 THEN B = 3
60 ON B GOSUB 100, 200, 300
65 REM LINE 60 COMPUTED GOSUB ON 'B'VARIABLE
70 PRINT "DO YOU WISH TO CONTINUE? (Y/N)";
80 GET AN$:IF AN$<>"Y" THEN END:ELSE GOTO 10
100 REM ***********
110 REM SUBROUTINES
120 REM ***********
130 PRINT "LESS THAN 100" : RETURN
200 PRINT "MORE THAN 100 BUT LESS THAN 200 "
: RETURN
300 PRINT "MORE THAN 200" : RETURN

RUN the program and enter any number you want. Since the
program is branching on the variable B, and not on A (the
INPUT variable), you will not get an error since the greatest
value of B can only be 3. Now let's get back to relationals and
see how they can be used with computed GOSUBS.
Remember, in using relationals, the only numbers we get are
O's and l's for false and true respectively. However, we can
use these O's and l's just like regular numbers. Try the

64

following:

10 SCNCLR
20 X = 1 : Y = 2 Z = 3
30 A = X < Z
40 B = Y > Z
50 C = Z > X
60 PRINT "A + A =" ; A + A
70 PRINT PRINT "A + B =" ; A + B
80 PRINT : PRINT "A + B + C =" ; A + B + C
90 END

Now before you RUN the program, see if you can determine
what will be printed by lines 60, 70 and 80. Once you have
made a determination, RUN the program and see what
happens. Go ahead and do it. How'd you do? Let's go over
it step by step.

STEP 1. Since X is less than Z, A will be "true" with a
value of one (-1). Therefore A + A (-1 + -1) will equal -2.

STEP2. Since Y is not less than Z , (Y = 2 and Z = 3,
remember) B will be "false" with a value of O. Therefore, A
+ B (-I + 0) will total -1.

STEP3. Since Z is greater than X, C will be "true" with a
value of -1. Therefore A + B + C (-I + 0 + -1) will equal-2.

If you got it right, congratulations! If not, go over it again.
Remember, very simple things are happening, and so don't
look for a complicated explanation! Now that we see how we
can get numbers by manipulating relationals, let's use them in
computed GOSUB's. The following program shows how:

10 SCNCLR
20 INPUT "HOW BIG WAS THE CROWD?"; HC
30 R = 1 + (HC >= 500) + (HC >= 1000)
40 IF R = 0 THEN R = 2
50 IF R = -1 THEN R = 3
60 ON R GOSUB 100,200,300
70 PRINT : INPUT "DO YOU WISH TO CONTINUE?
(YIN) It; AN$
80 IF AN$ < > "Y" THEN END : ELSE GOTO 10
100 REM ***********
110 REM SUBROUTINES

65

120 REM ***********
130 SCNCLR:PRINT "THE CROWD WAS NOT VERY BIG
- LESS THAN 500" : RETURN
200 SCNCLR : PRINT "THE CROWD WAS A PRETTY
GOOD SIZE - BETWEEN 500 AND 1000." : RETURN
300 SCNCLR : PRINT "THE CROWD WAS VERY BIG
- 1000 OR OVER! " : RETURN

This program is hinged on line 30's formula or algorithm.
Let's see how it works:

1. There are 3 conditions:
a. HC is less than 500
b. HC is 500 or more but less than 1000
c. HC is 1000 or greater.

2. If the fIrst condition exists both HC >= 500 and HC >=
1000 would be false. Thus 1 + 0 + 0 = 1. Therefore R = 1.

3. If HC is 0>= 500 but less than 1000 then HC >= 500
would be true but HC >= 1000 would be false. Thus we
would have 1 + (-1) + 0 = o. Convert the value ofR to 2.

4. Finally if He is both >= 500 and >=1000 then our
formula would result in 1 + (-1) + (-1) = -1. Convert the
value of R to 3.

==GETTING IT RIGHT==

At this point let's take a little rest and reflection. In
programming, there is no such thing as THE RIGHT WAY
and THE WRONG WAY. Certain programs are more
efficient, faster or take less code and memory than others, but
the computer makes no moral judgments. If a program does
what you want it to do, no matter how slowly it does it or
how long it took you to write it, it is "right." In the above
example we used an algorithm with relationals to do
something we could have done with more code. Don't expect
to use suchformulas right off the bat unless you have a strong
background in math. If you're not used to using algorithms,
don't expect to understand their full potential right away. The
one we used is relatively simple, and you will find far more
elaborate ones as you begin looking at more programs. The
main point is to keep plugging ahead. With practice, you will
learn all kinds of little shortcuts and formulas, but if you get

66

stuck along the way, just keep on going. Remember, as long
as you can get your program running the way you want it to,
you're doing the "right" thing.

Strings and Relationals

Before we leave our discussion of computed GOTO's and
GOSUB's with relationals, let's take a look at how relationals
handle strings. Try the following :

A$ = "A" : B$ = "B" : PRINT B$ > A$
<RETURN>

Surprised? In addition to comparing numeric variables,
relationals can compare alphabetic string variables with "A"
being the lowest and "z" the highest. (Actually, any string
variables can be compared, but we will just look at the
alphabetic ones here.) So if we ask is B$ greater than A$, we
get a "-1" (true) since B$ was a B and A$ was an A. Now
you might be wondering what on earth you could possibly
want to do with this knowledge. Well, in sorting strings (like
putting names in alphabetical order) such an operation is
crucial. Later on we will show you a routine for sorting
strings, but for now let's make a simple string sorter for
sorting two strings.

10 SCNCLR
20 INPUT "WORD *1 --> " ; A$
30 INPUT "WORD *2 --> " ; B$
40 PRINT : PRINT : PRINT
50 IF A$ < B$ THEN PRINT A$: PRINT B$
60 IF A$ > B$ THEN PRINT B$: PRINT A$

Just what you needed! A program that will put two words in
alphabetical order! ARRA YS The best way to think about
arrays is as a kind of variable. As we have seen, we can
name variables A, D$, KK%, Xl and so forth. An array
uses a single name with a number to differentiate different
variables. Consider the following two lists, one using regular
string variables and the other using a string array:

STRING VARIABLE
P$ = "PIG"
C$ = "CillCKEN'
D$ = "OOG"

STRING ARRAY
AM$(I) = "PIG"
AM$(2) = "CillCKEN'
AM$(3) = "DOG"

67

Now if we PRINT H$ we'd get HORSE and if we PRINT
AM$(4) we'd also get HORSE. Likewise, we could use
arrays for numeric variables such as:

A(1) 1
A(2) 2
A(3) 3
A(4) 4 etc.

Again, you may well ask, "So what? Why not just use
regular numeric or string variables instead of arrays?" Well,
for one thing, it can be a lot easier to keep track of what
you're doing in a program using arrays, and for another, it
can save a lot of ome. Consider the following program for
INPUTing a list of 10 names using a string array.

10 SCNCLR
20 FOR X = 1 TO 10
30 PRINT "NAME Itt; X ; : INPUT NA$ (X)
40 NEXT X
50 FOR X = 1 TO 10 PRINT NA$ (X)
60 NEXT X

Now, write a program that does the same thing using non­
array variables. It would take a lot more code to do so, but go
ahead and try it. Use the variables NO$ through N9$ for the
names just to see what it would take. If you re-wrote the
program, you saw how much time using arrays saved, but
before going on let's take a closer look at how the program
worked with the FORINEXT loop and array variable:

1. The FORINEXT loop generated the numbers sequentially
so that the array would be the following:

FOR X = 1 TO 10

68

NA$ (1)
NA$(2)
NA$ (3)
NA$(4)
NA$(5)
NA$ (6)
NA$ (7)

<--First time through loop
<--Second time through loop
<--Third time through loop
etc.

NA$ (8)
NA$ (9)
NA$(10)

NEXT X

2. Each string INPUT by the user was stored in a
sequentially numbered array variable.

3. Output, using the PRINT statement, was generated by the
FORINEXT loop sequentially supplying numbers to be
entered into array variables. Now to get used to the idea that
an array variable is a variable, enter the following:

A(10) = 432 : PRINT A(10) <FUE~>
XYZ (9) = 2.432 : PRINT XYZ (9) <FUE~>
R2D2$ (1) = "BEEP!" + CHR$ (7) : PRINT R2D2$ (1)
<FUE~>
J%(5) = 321 : PRINT J%(5) <FUE~>

OK, maybe it didn't take all that to convince you that an array
is a variable with a number in parentheses after it, but it's easy
to forget and think of arrays as something more exotic than
theyare.

THE DIMension of an ARRAY

If you've been very observant, you may have noticed we
haven't gone over the number 10 In our array examples. The
reason behind that is because once our array is larger than 10
we have to use the DIM (dimension) statement to reserve
space for our array. (Actually 11 array elements are
automatically dimensioned - 0 to 10.) The following is an
example of the format for DIMensioning an array.

10 SCNCLR
20 DIM AB(150) : REM DIMENSION OF ARRAY
VARIABLE • AB •
30 FOR X = 1 TO 150
40 AB(X) = X
50 NEXT X
60 FOR X = 1 TO 150
70 PRINT AB(X) ,
80 NEXT X

69

RUN the program as it is written. It should work fme. Now
delete line 20 by simply entering 20. (Remember how we
learned to delete single line numbers by entering that
number?) Now RUN the program, and you will get an error
for not DIMing the ARRAY. (?BAD SUBSCRIPT ERROR
IN 40 - that's because there was no DIM statement in Line
20). So, whenever your arrays are going to have more than
11 values from 0 to 10, be sure to DIM them.

=Better Safe Than Sorry Dept.:

Many programmers always DIM arrays, regardless of the
nzunber in the array. It is peifectly all right to do so, and
statements such as DIM X$(3) or DIM N% (5) are valid.
Often when copying programs from books or magazines you
may run across these lower level DIM statements because the
programmer thinks it's a good idea to DIM all arrays as part
of programming style and clarity. Furthermore, you can save
memory space by using the minimal amount of DIMension
space, and iJthe program is large enough, it may be necessary
to DIM and array at less than 11. Finally, some versions of
BASIC require all arrays to be DIMensioned.

Multi-DIMensional Arrays

So far, all we have examined are single dimension arrays.
However, it is possible to have arrays with two or more
dimensions. Let's begin with two-dimensional arrays, and
examine how to use arrays with more than a single
dimension. The best way to think of a 2-dimensional array is
as a matrix. For example if our array ranged from 1 to 3 on
two dimensions the entire set would include: A(l,I) A(l,2)
A(l,3) A(2,1) A(2,2) A(2,3) A(3,1) A(3,2) and A(3,3). By
laying it out on a matrix, we can think of the first number as a
row and the second as a column. This makes it much clearer:

COLUMN #1 COLUMN #2
ROW #1 A(I,I) A(I,2)
ROW #2 A(2,1) A(2,2)
ROW #3 A(3,1) A(3,2)

COLUMN #3
A(l,3)
A(2,3)
A(3,3)

Again, it is important to remember that each element in the
array is simply a type of variable. To drum that into your
head do the following:

70

XV$(3,1) = "I'M LIKE A VARIABLE" PRINT
XV$ (3, 1) <RETURN>

JK%(2,2) = 21 : PRINT JK% <RETURN>
MM (1,1) = 3.212 : PRINT MM(l,l) <RETURN>

OK, so you were reminded a bit much, but in order to use
arrays to their fullest advantage in programs, they must be
envIsioned as an orderly set of variables and not something
else. Now, let's use a 2-dimension array in a program. Our
program will be to line up people in a 12 member marching
band.

10 SCNCLR
20 DIM BA$(4,4) REM MAKE 4 'ROWS' AND 4
'COLUMNS'
30 FOR I = 1 TO 4 : REM ROWS
40 FOR J = 1 TO 4 : REM COLUMNS
50 READ BA$(I,J)
60 NEXT J
70 NEXT I
80 DATA MARY, TOM, SUE, PETE, JACK, NANCY,
BETTY, BILL
90 DATA RALPH, PAT, DARLENE, FRANK, HORACE,
DAVID, KARL, ERIC
100 REM ************
110 REM OUTPUT BLOCK
120 REM ************
130 FOR I = 1 TO 4 : REM ROWS
140 FOR J = 1 TO 4 : REM COLUMNS
150 PRINT BA$(I,J) , : REM COMMA WILL

FORMAT OUTPUT 4 ACROSS
160 NEXT J
170 NEXT I

When you RUN this program, all of your band members will
be lined up. However, you could have done the same thing
with a single dimension array since all that "lines them up" is
the use of the comma to format the PRINT statement in line
150. So, what's the big deal about a 2-dimension array?
Well, to see, let's add some lines to our program:

180 PRINT :PRINT "HIT ANY KEY TO CONTINUE ";
190 GETKEY AN$
200 SCNCLR: PRINT "WHAT ROW & COLUMN WOULD
YOU LIKE TO SEE? "

71

210 INPUT "ROW f-> ":R
220 INPUT "COL f-> ";C
230 PRINT: PRINT BA$(R,C); " IS IN ROW"; R;
" COLUMN ": C
240 PRINT : PRINT "MORE?(Y/N) ":
250 GETKEY M$
260 IF M$ = "Y" THEN 200

Now you can locate the value or contents on a specific array
on two dimensions. In our example, if you know the row
number and column number, you can find the band member
in that position. The use of 2-dimensional arrays in problems
dealing with matrixes is an important addition to your
programming commands. It is also possible to have several
more dimensions in an array variable. As you add more and
more dimensions, you have to be careful not to confuse the
different aspects of a single array. Sometimes, when a multi­
dimensional array becomes difficult to manage (or use), it is
better to break it down into several 1- or 2-dimensional
arrays. But just for fun, let's see what we might want to do
with a 3 dimensional array with the following program: (By
the way, this problem is based on an actual application!)

72

10 SCNCLR
20 PRINT "WINECELLAR ORGANIZER "
30 PRINT : PRINT "HOW MANY RACKS, ROWS,
COLUMNS?"
40 INPUT "(ENTER EACH SEPARATED BY A
COMMA) ":RK,R,C
50 DIM WI$(RK,R,C)
60 INPUT "HOW MAY BOTTLES TO STORE? "iN%
70 PRINT: FOR I = 1 TO N%
80 INPUT "RACK f-> "iRA
90 INPUT "ROW f-> "iRO
100 INPUT "COL f-> ":CO
110 INPUT "NAME OF WINE ":WN$
120 WI$(RA,RO,CO) = WN$
130 NEXT I
200 REM *********************************
210 REM ROUTINE FOR CHECKING CONTENTS OF
WINE CELLAR
220 REM *********************************
230 SCNCLR : INPUT "WHICH RACK f WOULD YOU
LIKE TO CHECK? ":RR
240 FOR I = 1 TO R

250 FOR J = 1 TO C
260 IFWI$(RR,I,J)= THEN WI$(RR,I,J)="EMPTY"
270 PRINT "RACK :/f:";RR;" ROW :/f:";I;" COLUMN
:/f:";J;" CONTAINS ";WI$(RR,I,J)
280 NEXT J
290 NEXT I
300 END

Now that was a pretty long program, but go over it carefully
to make sure you understand what it is doing. Again, let me
remind you that all the 3-dimensional array is a variable with a
lot of numbers in parentheses. Also, note on line 40 how we
INPUT several values with a single INPUT statement. We
used the format,

INPUT A, B, C

and as long as the operator (program user) is told to enter the
appropriate number of responses and separate each with a
comma, every thing will work fine. Also, it would be a good
idea to save this program on a disk as an example of a multi­
dimensional array.

Summary

We covered a good deal in this chapter, and if you
understood everything, excellent! If you did not, don't
worry, for with practice, it will all become very clear.
Whatever your understanding of the material, though,
experiment with all the statements. Be BOLD and daring
with your computer's commands, and as long as you have a
disk or cassette on which you can practice your skills, the
worst that can happen is that you will erase a few programs!
We learned that your COMMODORE-128 computer can
compute! Using the IFITHENIELSE statements and
relationals we can give the computer the power of "decision
making." Using subroutines it is possible to branch at
decision points to anywhere we want in our program.
Computed GOTOs and GOSUBs allow the execution to move
appropriately with a minimal amount of programming.
Finally, we examined array variables. Arrays allow us to
enter values into sequentially arranged variables (or elements).
Using FORJNEXT and DOIWHILEIUNTIL loops it is
possible to quickly program multiple variables up to the limits
of our DIMensions. Not only do arrays assist us in keeping

73

variables orderly, they save a good deal of work as well. In
the next chapter, we will begin working with commands that
help arrange everything for us. As our programs become
more and more sophisticated, we will need to keep better track
of what we're doing. By organizing our programs into small,
manageable chunks, we can create clear useful programs.

74

5
•

Program Organization

Introduction

Unless we organize, as we accumulate more and more
information, work, or just about anything else, things get
confusing. Good organization allows us to do more and to
handle more complex and larger problems. These principles
hold with programming. As we learn more statements, we
can do more things, but the more we do, the more likely we
are to get tangled up and lost. One of the areas that is likely to
be the fIrst to suffer from "overflow" is that of formatting
output. Variables get mixed up, arrays are misnumbered and
the screen is a mess. In order to handle this kind of problem,
we will deal extensively with text and string formatting. Not
only will we be able to put things where we want them, but
we will do it with style! The second major area of
disorganization is I/O (INPUT/OUTPUT). Some of the
problem has to do with formatting, but even more elementary
is the problem of organizing the input and output so that data
is properly analyzed. Data has to be connected to the proper
variables and be subject to the correct computations. Thus, in

75

addition to examining string formatting, we will also look at
organizing data manipulation.

Formatting Text

In Chapter 1 we said that the COMMODORE-128 keyboard
works in many ways like a ty~writer. One feature of a
typewriter is its ability to set 'tabs" so that the user can
automatically place text a given number of spaces from the left
margin. With your COMMODORE-128, you can TAB and
Spc. Additonally, there are many statements you make with
your keys. For example, if you enter PRINT {CLRlHOME}
[press the CLR/HOME key and SHIFf key- a little heart
appears], it works just like SCNCLR. Also, you can use the
PRINT statement with the arrow keys and have the cursor
moved around the screen. All statements using a keypress
with a PRINT statement are in brackets n, but the screen
shows an inver&e character. Statements using single keys
must be placed in quote marks in the same way as are strings.
Let's look at what each of these statements means:

Statement
SCNCLR
TAB (N)

SPC (N)

{CLR/HOME}

{HOME}

{ARROW}

76

Meaning
Clears SCreen and homes cursor
Used within PRINT statement
to place next character N spaces
from left man~in

Used within PRINT statement,
creates specified number of
spaces. (SPC starts printing
non-space I space after Nt
Works just like SCNCLR. Press
SHIFf key and CLR/HOME keys.
Inverse heart on screen.
Places cursor in upper left
hand corner of screen. Use the
CLR/HOME key without pressing
SHIFT key. Inverse'S' on screen.
Moves cursor one space in direction
arrow points.
i Inverse ball

+- Inverse vertical line

J. Inverse 'Q'
~ Inverse right bracket

Now, to better see how these statements format text output,
let's USE THEM!

10 SCNCLR : PRINT : PRINT
20 PRINT TAB (20)i"TAB TO HERE"
30 PRINT SPC(20)i"SPC TO HERE"
40 PRINT "{HOME}";"UP HERE!" :REM PRESS

THE CLR/HOME KEY WITHOUT THE SHIFT KEY
- YOU'LL GET AN INVERSE ItS"

50 FOR I = 1 TO 20 : PRINT : NEXT : PRINT
"DOWN HERE"

When you RUN this pro~ram, note that when you used the
{HOME} key/statement, It did not clear the screen. Rather, it
placed the cursor at the top of the screen, leaving what was
printed in lines 20 and 30 on the screen. Also, we were able
to produce a vertical tab by using empty PRINT statements in
line 50 to take the text down to vertical position 20 on the
screen. We could have used the PRINT "{DOWN
ARROW}" combination, but that would have taken extra key
strokes. Again, the other text on the screen was not erased.

Now let's have a little fun with our statements. Here's a little
program that will give you an idea of how to place text within
your program.

10 SCNCLR : FOR I = 1 TO 4 : PRINT : NEXT
20 INPUT "ENTER MESSAGE--> "; MS$
30 PRINT: INPUT"HORIZONTAL PLACEMENT (1-40»

"; H
40 PRINT : INPUT "VERTICAL PLACEMENT (1-25) >

"; v
50 SCNCLR
60 FOR VER = 1 TO V : PRINT :NEXT VER : PRINT

TAB(H); MS$
70 PRINT : PRINT "HIT ANY KEY TO CONTINUE OR

'Q' TO QUIT ";
80 GETKEY A$
90 IF A$ < > "Q" THEN 10 : ELSE END

As you can see, variables can be used with formatting
statements. Thus, TAB (H), is read in the same way as
TAB(lO) or TAB(l5) or any other number between 1 and 40.
Using the above program, what do you think would happen if
you entered "TIllS IS A LONG STRING", a HORIZONTAL

77

placement of 39 and a VERTICAL placement of 25? Since
the maximum TAB is 40 and the maximum vertical placement
is is 25, the string (MS$) will go over the boundaries. Go
ahead and try it to see what happens. In fact, it would be a
good idea to test the limits of TAB and vertical placement with
this program to get a clear understanding of theIr parameters.

To see how to use the cursor control keys from within a
program, we'll start off with a simple demonstration that will
dramatically show you the importance of formatting
statements using the arrow keys. In the following program,
we will fIrst RUN it with a semi-colon after the PRINT
"{RIGHT ARROW}", and then RUN it a second time
without the semi-colon.

10 SCNCLR
20 FOR X=l TO 10
30 PRINT "{RIGHT ARROW}";
40 NEXT X
50 PRINT "X"

When you RUN the program, the 'X' is at the top of the
screen in Column 11. Remove the semi-colon from line 30
and RUN it again. On the second time, the 'X' is in Row 11.
What happened is that when the program was fIrst RUN, the
cursor was moved to the right 10 times with NO CARRIAGE
RETURN. However, when the semi-colon was removed,
each time the program went through the loop, it moved the
cursor one space to the right AND then issued a CARRIAGE
RETURN. If we substitute a character for the right arrow
key, the we can better see this. Go ahead and place the
character 'V' where the right arrow symbol [inverse bracket]
is and RUN the program with and without the semi-colon.
Where the letter 'V' is on your screen is where the cursor
would move using the right arrow key within a PRINT
statement

Using PRINT USING and PUDEF

One of the most useful formatting tools in COMMODORE
128 BASIC is PRINT USING. Whl they carne up with this
awkward name is beyond me, but I m sure glad they have it
for formatting text. The BASIC 7.0 version of PRINT
USING is a little different other versions you may have used
on other computers, but it is similar enough so that you
should have no trouble in adjusting to it

78

By now you have probably noticed that there are gaps
between numbers and strings using the PRINT statement.
Also, you may have noticed that when you have numbers
with trailing zeroes after decimal points, the zeroes are
dropped. For example, enter:

PRINT 20.30 <Return>

Your results were

20.3

For the most part that's fine, but with our CHECKBOOK
program, it looks sloppy to have a balance of $ 456.7. The
dollar sign is off and there's no zero after the 7. What's a
programmer to do? For the first problem of having gaps
between your dollar sign and amount, we can use the format,

PRINT USING "#$I##"i123

The pound (#) signs refer to the number of digits to be printed
out Try the following program to see what happens when
there are more digits than spaces for them:

10 SCNCLR
20 FOR X = 1 TO 150 STEP 50
30 PRINT USING "$t"iX
40 NEXT X

The results show:
$1
$*
$*

Now, using your EDITOR, change line 30 to,
30 PRINT USING "$###";X

This time you got,

$ 1
$ 51
$101

If you add more pound (#) signs, you will just get more
spaces to the left of the dollar sign. Change line 30 by adding
about five more pound (#) signs to see what happens.

79

Now let's solve the pesky problem of the dropped zeros. All
you have to do is to include a decimal point (.) among the the
pound signs (#) where you want your decimal points. Watch
this when you RUN it:

10 SCNCLR
20 FOR X = 10 TO 250 STEP 20
30 PRINT USING "U. U" i xiS
40 NEXT X

You got all your trailing zeroes, and everything was lined up
nicely.

Next, let's combine our knowledge and use both dollar signs
and trailing zeroes. Also, in order to get the dollar sign
adjacent to the left-most number, we will place a pound sign
(#) in front of the dollar sign.

PRINT USING "#$U.U"i N

and try the following program: (Note: We have added some
key formatting. See what it does on your screen. Use the
non-shifted CLR/HOME for {HOME}.)

10 SCNCLR : PRINT
20 INPUT "HOW MUCH $ WOULD YOU LIKE "iN
30 PRINT "{HOME}" :REM INVERSE'S' ON SCREEN
40 FOR X=l TO 5 :PRINT"{DOWN ARROW}"i:NEXT X
50 PRINT USING "#$UUUUU. U" i N
60 PRINT "{HOME}"
70 IF N=O THEN END : ELSE GOTO 20

When asked how much you would like, do not put any cents
in to see what happens. (What's a few cents when dealing
with millions?) Line 70 expects a 0 (zero) to end the
program. However, if you enter a zero, and there are still
values at the INPUT position on the screen, you will not exit
the program. You have to enter a zero and then space over the
unwanted numbers to exit. To fix that, we will use the cursor
keys to move to the end of the INPUT and blank over it with
10 spaces between quote marks. Insert the following three
lines:

80

62 FOR X=l TO 27 :PRINT"{RIGHT ARROW}"i
:NEXT X
64 PRINT "
BETWEEN QUOTES

" i : REM 10 SPACES

66 PRINT "{HOME}"

Your format is nice and clean when you RUN the program.

Now that you have an idea how to use PRINT USING with
dollars and cents, let's take a look at what else you can do
with this statement. Enter the examples to get used to each
format

PRINT USING CHART
(Suitable for Framing)
======================

One digit position for each pound sign (#).
EXAMPLE:

PRINT USING "###";432

##.## Places decimal point in position relative to pound
signs and number of pound signs.
EXAMPLE:

PRINT USING "U.U#"i 34.56

$ Places left justified dollar sign before right justified
number.
EXAMPLE:

PRINT USING "$U#.U"; 23.45

#$ Places dollar sign adjacent to left-most number with right
justified output of numbers.
EXAMPLE:

PRINT USING "#$#U. U"; 1. 43

tttt Placed at the end of a PRINT USING format, it
results in an exponential output.
EXAMPLE:

PRINT USING "uuiiii";8502

, (comma) Places comma at indicated position in numeric
output.
EXAMPLE:

PRINT USING "#,#U,Uf"i 1234567

+ OR - Places plus or minus in front or back of number.
EXAMPLE:

PRINT USING "+UU"; 5599

81

PRINT USING "f$UU.U-";-898.88

= Centers strings based on the number of spaces indicated by
pound signs (#).
EXAMPLE:

10 SCNCLR
20 FOR X= 1 TO 9
30 INPUT "WHAT'S YOUR STRING";S$(X)
40 NEXT X
100 REM ***************
110 REM CENTERED OUTPUT
120 REM ***************
130 FOR X=l TO 9
140 PRINT USING "fUUUUf=" ;S$ (X)
150 NEXT X

> Right justifies string in field
EXAMPLE:

10 SCNCLR
20 FOR X= 1 TO 9
30 INPUT "WHAT'S YOUR STRING";S$(X)
40 NEXT X
100 REM **********************
110 REM RIGHT JUSTIFIED OUTPUT
120 REM **********************
130 FOR X=l TO 9
140 PRINT USING "fUUUUf>" ;S$ (X)
150 NEXT X

Other keys. Any other key placed in an end position will
attach itself to the end of a number.
EXAMPLE:

PRINT USING "fl%";45

PUDEF - Roll Your Own Format

The default symbols in PRINT USING are set in four
positions. They are:

1

Space

82

To redefme these symbols, use the PUDEF (for Print Using
DEFinition) command. BE CARERJL with it, though.
Even your faithful SYSTEM GUIDE goofed up the example
on page 79. When redefming the characters, you must
redefine every single space or it will result in a blank. For
example, let's say you wanted British pounds (£) instead of
dollar signs ($), but you still wanted the commas and periods
left the same. You would do the following:

PUDEF n ,.£"

That would swap the British pound sign for the dollar sign
and keep the comma and period. If you did what your
SYSTEM GWDE suggested, you'd have blanks where the
comma and period went! (We're still trying to figure out what
else you can do with PUDEF. If you have some good ideas,
write and let us know.) Try out the following program with
PUDEF.

5 SCNCLR
10 PUDEF " ,.£"
20 PRINT "THE ROLLS ROYCE WILL COST YOU ";
30 PRINT USING "4$U,Ut.##";85641.55
40 PUDEF " ,.$"

Notice we returned PUDEF to the default conditions at the
end of the program. Whatever you defme PUDEF to be will
stay put until you re-define it or turn off your computer.
Therefore, it is a good habit to return it to the default
conditions whenever it is used. If you constantantly have to
redefine it, write a one line program to kick in the re-definition
and leave it along.

PRINT USING Formats defined in Strings

A handy way to get the PRINT USING formats set up is to
put them into string variables. For example, for formatting
dollars and cents and percentages, you might want to do the
following:

10 DLLAR$= "#$U##4. U" : PERCENT$= "##%"
20 PRINT USING DLLAR$; 1234.56
30 PRINT USING PERCENT$;55

In big programs where various formats are used, you can

83

defme your PRINT USING formats at the beginning of your
program, making it a lot easier to use the different outputs
where required. Also, be sure to used a variable name for
your string that will be easily remembered.

There are a lot of things you can do in formatting your output
with PRINT USING. In some cases it will wholly replace
PRINT, and in others it will not. The only way to find out is
to use it. Experimentation is the heart of programming,
especially with problems involving the format of your output.

Unravelling Strings

Our discussion of strings up to this point has involved
"whole" strings. That is, whatever we define a string to be,
no matter how long or short, can be considered a "whole"
string. For example, if we define R$ as "WALK" then we
can consider "W ALK" to be the whole of R$. Likewise, if
we defmed R$ as "A VERY LONG AND WORDY
MESSAGE" then, "A VERY LONG AND WORDY
MESSAGE" would be the whole string of R$. There will be
occasions, however, when we want to use only part of a
string or tie several strings together. (When we get into data
base programs, we will find this to be very important.) Also,
there are applications where we will need to know the length
of strings, find the numeric values of strings, and even
change strings into numeric variables and back again.

=These Will Be Useful!=

I hate to admit it, but when I first learned about all of the
statements we are about to discuss, I thought, "Boy, what a
waste of time!" It was enough to get the simple material
straight, but why in the world would anyone want to chop up
strings and put them back together again? lfyou want only a
certain segment of a string, why not simply define it in terms
of that segment? And if you want a longer string, then just
define it to be longer! Those were my thoughts on the matter
of string formatting. However, I have now come to the point
that I find it very difficult to even conceive of programming
without these powerful statements. So, trust me! String
formatting statements are terrific little devices to have, and if
you do not see their applicability right away, you will as you
begin writing more programs.

84

String Formatting

We will divide our discussion of string formatting into four
parts: 1) Calculating the length of a string; 2) Locating parts of
strings; 3) Changing strings to numeric variables and back
again; and 4) Tying strings together (concatenation).

Calculating the LENgth of Strings

Sometimes it is necessary to calculate the length of a string for
formatting output. Happily, your COMMODORE-128 is very
good at telling you the length of a particular string. By the
statement, PRINT LEN (A$) you will be given the number of
characters, including spaces, your string has. Try the
following little program to see how this works:

10 SCNCLR
20 INPUT "NAME OF STRING-> "; A$
30 PRINT A$; " HAS "; LEN(A$); " CHARACTERS"
40 PRINT : PRINT " MORE? (yiN) ";
50 GETKEY AN$
60 IF AN$ = "Y" THEN 20

Now to see a more practical application, we will look at a
modified version of the centering routine we used in the last
chapter.

10 SCNCLR
20 PRINT "ENTER A STRING LESS THAN 40
CHARACTERS" : INPUT"-> "; S$
30 SCNCLR
40 L = 20 - LEN(S$) 12 : PRINT TAB(L); S$

50 FOR J = 1 TO 20: PRINT: NEXT J
60 PRINT "HIT ANY KEY TO CONTINUE OR 'Q' TO
QUIT ";
70 GETKEY A$
80 IF A$ < > "Q" THEN SCNCLR : GOTO 10
90 END

Now that we can see how to compute the LENgth of a string
and then use that LENgth to compute our tabbing, let's see
how we can control the input with the LEN statement.
Suppose you want to write a program that will print out
mailing labels, but your labels will only hold 30 characters.
You want to make sure all of your entries are 30 or fewer
characters long, including spaces. To do this we will write a

85

program that checks the LENgth of a string before it is
accepted.

10 SCNCLR
20 PRINT "ENTER A NAME LESS THAN 30
CHARACTERS INCLUDING SPACES"
30 INPUT "DO NOT USE COMMAS -> "; NA$
40 IF LEN (NA$) > 30 THEN GOTO 100 : REM
TRAP
50 PRINT : PRINT NA$
60 PRINT: PRINT "ANOTHER NAME? (Y/N) ";
70 GETKEY AN$
80 IF AN$ < > "Y" THEN END
90 GOTO 10
100 REM ****
110 REM TRAP
120 REM ****
130 SCNCLR : PRINT "PLEASE USE 30 CHARACTERS
OR LESS "
140 PRINT : GOTO 20

Now the first thing you should do is to break the rule!!! Go
ahead and enter a string of more than 30 characters to see
what happens. (If your computer gets snotty with you, you
can always re-program it. It helps to remind it of that fact
periodically.) If the program was entered properly, it is
impossible to enter a string of more than 30 characters. From
the above examples, you can begin to see how the LEN
statement can be useful in several ways. There are many
other ways that such statements can be employed to reduce
programming time, clarify output, and compute information.
The key to understanding its usefulness is to experiment with
it and see how other programmers use the same statement

Finding the MIDdle$, LEFT$, and RIGHT$ parts
of a string

Suppose you want to use a single string variable to describe
three different conditions, such as "POOR FAIR GOOD", but
you want to use only part of that string to describe an
outcome. Using MID$, LEFT$ and RIGHT$, it is possible
to PRINT only that part of the string you want. For example,
the following program lets you use a single string to describe
three different conditions:

86

10 SCNCLR
20 X$ ="POOR FAIR GOOD"
30 PRINT "HOW DO YOU FEEL TODAY? «P>OOR,
<F>AIR OR <G>OOD)"i
40 GETKEY F$
50 IF F$ "P" THEN PRINT LEFT$(X$,4)
60 IF F$ = "F" THEN PRINT MID$(X$,6,4)
70 IF F$ = "G" THEN PRINT RIGHT$(X$,4)
80 PRINT: PRINT: PRINT "ANOTHER GO? (Y/N)
" . ,
90 GETKEY AN$
100 IF AN$ = "Y" THEN 10

Let's face it, it would have been easier to simply branch to a
PRINT 'GOOD' 'FAIR' or 'POOR' and no less efficient.
But, no matter, it was for purposes of illustration and not
optimizing program organization. Let's see what the new
statements do.

STATEMENT
MID$(A$,N,L)

LEFf$(A$,L)

RIGHT$(A$,L)

MEANING
Finds the portion of A$
beginning at Nth character
L characters long.
Finds the portion A$, L characters
long starting at the LEFf side
of the string.
Finds the portion of A$, L
characters long starting at the
RIGHT side of the string.

To give you some immediate experience with these
statements, try the following:

W$ = "WHAT A MESS" : PRINT LEFT$ (W$, 4) <RETURN>
G$ = "BURLESQUE" : PRINT MID$ (G$, 4, 3) <RETURN>
X$ = "A PLACE IN SPACE" : PRINT RIGHT$ (X$, 5)
PRINT RIGHT $ (X$, 3) <RETURN>

Another trick with partial strings is to assign parts of one
string to another string. For example:

10 SCNCLR
20 BIG$ = "LONG LONG AGO AND FAR FAR AWAY"
30 LITTLE$ = MID$(BIG$,11,3)
40 AWY$ = RIGHT$(BIG$,4)
50 LG$ = LEFT$(BIG$,4)

87

60 PRINT: PRINT: PRINT AWY$;" "
;LG$;"";LITTLE$
70 REM BEFORE YOU RUN IT, SEE IF YOU CAN
GUESS THE MESSAGE.

For an interesting effect, try the following little program:

10 SCNCLR: FOR I = 1 TO 10 : PRINT : NEXT
20 INPUT "YOUR NAME--> "; NA$
30 FOR I = LEN(NA$) TO 1 STEP -1 : PRINT
MID$(NA$,I,l); : NEXT I
40 SLEEP 2
45 REM ** LINE 50 USES THE NON-SHIFTED
CLR/ HOME KEY * *
46 REM ** NOTE HOW IT FUNCTIONS TO PLACE THE
CURSOR VERTICALLY **
47 REM ** IN CONJUNCTION WITH THE LOOP **
50 PRINT" {HOME}" : FOR V = 1 TO 11 : PRINT
: NEXT V
55 REM ** IN LINE 60 'K LOOP' SLOWS
56 REM IT DOWN FOR SLOW MOTION EFFECT **
60 FOR I = 1 TO LEN (NA$) : PRINT MID$(NA$,
1,1); :FOR K = 1 TO 50 : NEXT K : NEXT I
70 FOR VT = 1 TO 5 : PRINT : NEXT VT :
PRINT TAB (5); "WANNA DO IT AGAIN? (Y/N) ";
80 GETKEY AN$
90 IF AN$ = "Y" THEN 10

Now you have probably been wondering ever since you got
your computer how to make it print your name backwards.
Well, now you know! (If your name is BOB you probably
didn't notice it was printed backwards - try ROBERT.)
Actually, the above exercise did a couple of things besides
goofing off. First, it is a demonstration of how loops and
partial strings (or substrings) can be used together for
formatting output. Second, we showed how output could be
slowed down for either an interesting effect or simply to give
the user time to see what's happening. Since we're on the
topic of speed, let's learn how to use your COMMODORE-
128's clock. Remember we pointed out that TI$ was a
"reserved variable," and now we will see why. Try the
following in the Immediate Mode:

TI$ = "101030" <RETURN>

Now wait a few seconds and enter,

88

PRINT TI$ <RETURN>

The value of TI$ changed from 101030 to something else! If
you waited for just a few seconds, 10 1030 changed to
101050 or somewhere in that range. To see what is
happening, let's break it down in to hours, minutes and
seconds.

10 10 30 = 10 hours 10 minutes 30 seconds.

We'd say that time is 10:10 and 30 seconds on a normal
clock. Well, that's exactly what TI$ does. It ticks off the
seconds, then minutes and finally hours. To better see this,
let's make a little clock program.

10 SCNCLR : PRINT "COMMODORE-128 CLOCK"
20 FOR I = 1 TO 4 : PRINT : NEXT
30 PRINT"ENTER TIME(OO HRS 00 MINS 00 SECS)"
40 INPUT TI$
50 SCNCLR
60 PRINT "{HOME}":FOR 1=1 TO 10:PRINT: NEXT
70 PRINT "COMMODORE TIME-> ";TI$: GOTO 60

When you run this program, be sure to enter all 6 digits for
hours, minutes and seconds. For example, if the time you
want to enter is 8:14, enter 081400, not just 814. Besides
using TI$ for a clock to display time on your screen, you can
also use it for a timer in your programs. By first setting a
value for TI$ and then checking it in your program, you can
have timing for responses. The following is a simple math
game that adds the element of time:

10 SCNCLR : FOR I = 1 TO 5 : PRINT : NEXT :
TI$ = "000000"
20 INPUT "ENTER 1ST NUMBER->"; A
30 INPUT "ENTER 2ND NUMBER->"; B
40 PRINT: PRINT "WHAT IS"; A ; "+"; B;
50 INPUT C
60 IF A + B < > C THEN 200
70 IF TI$ > "000010" THEN GOTO 100
80 PRINT: PRINT "THAT'S RIGHT!!!!"
90 SLEEP 2 : GOTO 10
100 REM *************
110 REM TOO MUCH TIME
120 REM *************

89

130 SCNCLR : PRINT : PRINT "YOU RAN OUT OF
TIME!"

140 SLEEP 2 : GOTO 10
200 REM ************
210 REM WRONG ANSWER
220 REM ************
230 PRINT "THAT'S NOT QUITE RIGHT"
240 INPUT "PRESS RETURN TO CONTINUE" iCR
250 GOTO 10

Examine the program carefully. Note how the time is checked
in line 70 and how it is reset to "000000" each time the
process is restarted

String Searching

Some programs require finding one string inside another
string. (Sure it sounds weird, but there are a lot of really neat
things you can do with it. Honest.) Using the INSTR
statement, along with the substring statements (MID$ and
those guys), it is possible to find parts of a string and then do
something useful with them. We'll start off by seeing how
INSTR works, and then we'll do something practical with it.
To begin with, it returns the beginning posinon in a string of
the search string. For example, let's see where CUP is in
mccup.

10 A$="HICCUP"
20 PRINT INSTR(A$,"CUP")

When you RUN the program, you get a '4' indicating that the
word "CUP" begins in the forth letter of the word
"IDCCUP." Since it is unlikely you will need our example
application any time soon, let's see how it might be used in a
practical program.

Suppose you have a bunch of strings that are arranged with
last name first and first name last For instance, Joe Blow is
in a string:

Blow Joe

It is not unusual to arrange strings that way for purposes of
alphabetical sorting. However, when you want to create lists
or mailing labels, it just doesn't look right having people's

90

names backwards. We'll create a little program that will fix
things so that first names come first and last names last and
then go through it and explain how it works.

10 SCNCLR
20 INPUT "LAST NAME AND FIRST NAME"iNA$
30 SP$=" " : REM A BLANK SPACE
40 L=INSTR(NA$,SP$)
50 NF$=MID$(NA$,L+1)
60 NL$=LEFT$(NA$,L-1)
70 PRINT NFiSPiNL$

When you RUN the program, be sure to put a space between
the last and first name when prompted. Stepping through the
program, we fmd:

Step 1. We will look for the space between the last and first
names with SP$ which has been defmed as a blank space.
(Line 30)

Step 2. Using INSTR, we store the starting position of the
space in the variable L. (Line 40)

Step 3. The first name is everything to the right of the space;
so using MID$, we define NF$ as everything from the right
of the space to the end of the string. Remember, if we do not
put a second parameter value in for MID$, it defaults to
everything from the first parameter (starting position) to the
end of the string. (Line 50)

Step 4. Conversely, everything to the left of the space is the
last name, so we load that into the string variable, NL$ using
LEFf$. (Line 60)

Step 5. All that we have to do now is to rearrange things in
the order we want and PRINT them out (Line 70)

=A Very Short Sermon=:

By breaking down a problem into simple little tasks, it is a lot
easier to write programs.

91

Converting Between String and Numeric Variables

Strings to Numbers. Now we're going to learn about
changing strings to numbers and numbers to strings. If
you're like me, when I first found out about these statements,
I thought they were pretty useless. After all, if you want a
string use a string variable, and if you want a number use a
numeric variable. Simple enough, but again, once you
understand their value, you wonder how you could do
without them. To get started, let's RUN the following
program:

10 SCNCLR
20 FOR I = 1 TO 5 : READ NA$(I) : NEXT I
30 FOR I = 1 TO 5
40 X(I) = VAL(RIGHT$(NA$(I),l))
50 NEXT I
60 FOR I = 1 TO 5 : PRINT "OVERTIME PAY= $";

X (I) * (1. 5 * 7) : NEXT I
70 DATA SMITH 7, JONES 8, MCKNAP 6, JOHNSON

2, KELLY 3

Using DATA that were originally in a string format, we were
able to change a portion of that string array to a numeric array.
By making such a conversion, we were able to use our
mathematical operations on line 60 to figure out the overtime
pay for someone receiving time and a half at seven dollars
($7) an hour. Well, that's pretty interesting, but we don't
have a list of who got what and the total overtime paid! Why
don't you try it yourself. Change the program so that
everyone's name appears with the amount of overtime they
received and a total overtime paid. (Hint: You are looking for
the substring LEFr$ (NA$(I), LEN (NA$(I)-2)) since you
want to drop the number and space after each name.) When
you get it, write me a letter to show me how you figured it
out.
It always helps to do a few immediate exercises with a new
statement to get the right feel; so try these:

92

A$ = "123" : PRINT VAL (A$) + 11 <RETURN>
Q$ = "99.5" : PRINT VAL(Q$) * 7 <RETURN>
SALE$ = "44.95" : PRINT "ON SALE AT HALF
PRICE ->$"; VAL (SALE$) / 2 <RETURN>

DO$ = "$103.88" : DN$ = "$18.34" : PRINT VAL
(RIGHT$(DO$,6» + VAL (RIGHT$(DN$,5»
<RETURN>

NOTE: Since you may want to SAVE the above examples
on tape or disk, all you have to do is to add a line number and
SA VB them as little programs.

Numbers to Strings. All right, let's now go the other
way. We saw why we might want to change strings to
numbers, but we may also want to change numbers to strings.
To make the conversion we use the STR$ statement. For
example, look at the following program:

10 SCNCLR
20 PRINT "ENTER A NUMBER WITH 5 DIGITS "
30 INPUT" AFTER THE DECIMAL POINT ";A
40 A$ = STR$ (A)
50 PRINT: PRINT LEFT$ (A$,4)

As you can see you have truncated the number to 3 characters
including the decimal point. (Change LEFr$ to RIGHT$ in
line 40 and you will get the rightmost 4 <not 3> characters of
the string. (Only five people in the universe know why it
does this, and they aren't talking. However, I'll bet it has
something to do with first character in numbers being an
invisible sign of plus or minus.) Now, let's do some in the
immediate mode to get some practice.

A = 5.00 : A$ = STR$ (A) : PRINT A$ <RETURN>
V = 2345 : V$ = STR$(V) : PRINT V$
<RETURN>

BUCKS = 22.36 : BUCKS$ = STR$(BUCKS)
LEFT$ (BUCKS$, 2) <RETURN>

Combining Strings with Concatenation

PRINT

We have seen how we can take a portion of a string and
PRINT it to the screen. Now, we will tie strings together.
This is called CONCATENATION and is accomplished by
using the "+" sign with strings. For example:

10 SCNCLR
20 INPUT "YOUR FIRST NAME -> "; NF$
30 INPUT "YOUR LAST NAME -> "; NL$
40 NA$ = NF$ + NL$

93

50 PRINT NA$

A little messy, huh? However, you can see how NF$ and
NL$ were tied together into a single larger string. Now,
change line 40 to read

40 NA$ = NF$ + " " + NL$

This time when you RUN the program, your name will turn
out fine. Not only did we concatenate string variables, we
also concatenated strings themselves. For example, it is
perfectly all right to do the following:

PRINT "ONE" + "ONE" <RETURN>

Now there isn't much you can do with ONEONE, but we can
see the principle of operation with concatenating strings. To
see somethin~ a little more practical and a nifty trick to boot,
try the followmg program.

10 SCNCLR
20 FOR X=l TO 40
30 LINE$=LINE$ + tt_"
40 NEXT X
50 PRINT : PRINT
60 PRINT LINE$

Setting Up Data Entry

Now that we have a fum grip on numerous statements, it is
time we begin thinking seriously about organizing our
programs. The first thing we must do is to arrange our data
entry in a manner that we ourselves and others can
understand. This involves blocking elements of our program
and deciding what variables and arrays we will be using.
Also, when we enter data, we want to make sure that we are
entering the correct type of data; so we have to set "traps" so
that any input that is over a certain length or amount can be
checked against our parameters. Let's look at a way to make
our strings a certain length (no shorter or longer than a length
we want). We've already discussed how to keep strings to a
maximum length, so let's see how to keep them to a minimum
as well. This latter process is referred to as "padding."

10 SCNCLR

94

20 FOR I = 1 TO 8 : PRINT : NEXT I
30 INPUT "YOUR COMPANY-->"; CM$
40 IF LEN(CM$) <= 10 THEN 70
50 IF LEN (CM$) > 10 THEN PRINT "10 OR FEWER

CHARACTERS PLEASE" : REM TRAP FOR TOO LONG
A NAME
55 REM PRESS THE CONTROL AND 9 KEYS

SIMULTANEOUSLY {CTRL-9} IN LINE 60
60 PRINT :PRINT "{CTRL-9}HIT ANY KEY TO
CONTINUE-> ";

70 GETKEY A$
80 GOTO 10
90 IF LEN (CM$) < 10 THEN CM$ = CM$ + "X" :

GOTO 90 : REM PADDING
100 SCNCLR : FOR I = 1 TO 8 : PRINT : NEXT
110 PRINT "THE COMPUTER HAS DECIDED THAT "
120 PRINT CM$; .. SHOULD GIVE YOU A RAISE!"

Now if YOUR COMPANY <CM$> is less than 10
characters, you will see some "X's" stuck on the end. These
were put there to show you how padding works. Now
change the "X" to " " <a space> in line 90 and see what
happens. Go ahead. The second time you ran the program, if
your company's name was less than 10 characters, there are a
lot of blank spaces after the company name. To remove the
spaces, we would enter:

95 IF MID $ (CM$,LEN(CM$),l) = " " THEN CM$ =
LEFT$ (CM$, (LEN (CM$).-l): GOTO 95

Setting Up Data Manipulation

Once you have organized your input, the next major step is
performing computations with your data. There are
essentially two kinds of data manipulation you will deal with:

1. Numeric - Manipulating numeric data with
mathematical operations.
2. String - Manipulating strings with concatenation and
substring statements.

Most of the string manipulations are for setting up input or
output, and so we will concentrate on manipulating numeric
data. We will use a simple example that keeps track of three
manipulations: (1) additions (2) subtractions and (3) running
balance. This will be our check book program we started

95

earlier.

96

10 SCNCLR : DLLAR$="f$UfU.U"
20 REM **************************
30 REM BEGIN INPUT & HEADER BLOCK
40 REM **************************
50 CB$="=COMPUTER CHECK-BOOK="
60 L=20-LEN(CB$)/2
70 PRINT TAB(L)iCB$
80 FOR 1=1 TO 4 : PRINT : NEXT
90 INPUT "ENTER BALANCE->"iBA
100 PRINT: PRINT : PRINT"l. ENTER DEPOSITS"
llO PRINT: PRINT "2. DEDUCT CHECKS"
120 PRINT: PRINT "3. EXIT"
130 FOR X=l TO 7 : PRINT : NEXT X
140 PRINT "CHOOSE BY NUMBER"; INPUT A
150 ON A GOTO 210,410,610
160 GOTO 130 : REM TRAP
200 REM ********************
210 REM DATA MANIPULATION *1
220 REM ********************
230 SCNCLR :FOR 1=1 TO 6 :PRINT: NEXT
240 INPUT "ENTER AMOUNT OF DEPOSIT"iDP
250 BA=BA+DP:REM RUNNING BALANCE
260 PRINT:PRINT:PRINT"YOU NOW HAVE "i
270 PRINT USING DLLAR$iBA
280 PRINT:INPUT "MORE DEPOSITS (Y/N) ";AN$
290 IF AN$="Y" THEN 230
300 PRINT:INPUT "WOULD YOU LIKE TO DEDUCT

CHECKS (Y/N) ";AN$
310 IF AN$="N" THEN 610

IF AN$="Y" THEN 410 320
330
400
410
420
430
440
450
460
470
480
490
500
510
520

SCNCLR : GOTO 300 : REM TRAP
REM *******************
REM DATA MANIPULATION 2
REM *******************
SCNCLR : FOR I=lT06 : PRINT:NEXT
INPUT "ENTER AMOUNT OF CHECK "iCK
BA=BA-CK : REM RUNNING BALANCE
PRINT : PRINT"YOU NOW HAVE ";
PRINT USING DLLAR$;BA
PRINT : PRINT
INPUT "MORE CHECKS(Y/N)-'Q' TO QUIT"iAN$
IF AN$="Y" THEN 430
IF AN$="Q" THEN 610
PRINT:INPUT"ANY DEPOSITS (Y/N) "iAD$

530 IF AD$="Y" THEN 210
540 GOTO 480 : REM TRAP
600 REM *****************
610 REM TERMINATION BLOCK
620 REM *****************
630 SCNCLR : FOR 1=1 TO 400 :PRINT"$";

NEXT
640 PRINT"YOU NOW HAVE A BALANCE OF ";
650 PRINT USING DLLAR$;BA

This program is designed to provide a simple illustration of
how to block data manipulation. However, there are some
problems with it in the output. We are not getting the O's on
the end of our balance! This is an "output" problem we will
discuss in the following section, but before we continue,
make sure you understand how we blocked the data
manipulation. We used only three variables:

BA = BALANCE
CK=CHECK
DP=DEPOSIT

When we subtracted a check, we simply subtracted CK from
BA, and when we entered a deposit, we added DP to BA. In
this way we were able to keep a running balance and at the
very end BA was the total of all deposits and checks. By
keeping it simple and in blocks we were able to jump around
and still keep everything straight

Scroll Control

One of the big problems in output occurs when you have long
lists that will scroll right off the screen. For exam:ple, the
output of the following program will kick the output nght out
the top of the screen:

10 SCNCLR
20 FOR X = 1 TO 100 : PRINT X : NEXT

Instead of numbers, suppose you have a list of names you
have sorted or some other output you wanted to see before
they zipped off the top of the screen. Depending on the
desired output, screen format and so forth there are several
different ways to control the scroll. Consider the following:

10 SCNCLR

97

20 FOR X=l TO 100
30 IF C=23 1HEN GOSUB 100
40 C=C+1
50 PRINT X : NEXT X
60 GOSUB 100
70 END
100 REM *******
110 REM HOLD IT
120 REM *******
130 PRINT: PRINT "HIT ANY KEY TO CONTINUE";
140 GETKEY A$
150 SCNCLR: RETURN

POS(O)

While we are on the topic of locating the cursor position, let's
take a look at POSCO) as well. The POSCO) variable locates
the horizontal position, and it allows you to control side to
side scrolling. For example, the following program enters a
PRINT statement to give a linefeed when a certain horizontal
position is exceeded

10 SCNCLR
20 FOR X=1 TO 40
30 Y=POS (0)
40 IF Y>30 THEN PRINT
50 PRINT "HERE";
60 NEXT X

Run the program, and all the "HERE's" are arranged in a
block. Now delete line 40 in the program and RUN it again.
The second time, the arrangement is not blocked. In larger
programs when you do not want to have to determine where
to locate the cursor every time there is a new screen output,
you can store the values ofPOS(O) in variables, and then use
those variables to move the cursor back to the desired
position. The key to understanding how to use these two
variables is to experiment with them in formatting output.

REMEMBER! ! You, not the computer, are in
CONTROL! You can have your output any way you want it.
To use more of the screen, you could have the output tabbed
to another column after the vertical screen is filled. For
example:

98

10 SCNCLR
20 FOR X=l TO 36
30 IF X>18 THEN GOSUB 100
40 PRINT X : NEXT X
50 END
100 REM *******
110 REM ARRANGE
120 REM *******
130 IF X=19 THEN PRINT "{HOME}"; REM

UNSHIFTED CLR/HOME
140 PRINT TAB(20);
150 RETURN

Another trick is to make "calculated columns" that come
up simultaneously. For example, the following program lines
up output in three equal columns. If the number is not equally
divisible by three, then it tags on the extra values in the last
column. Notice how we created a MOD (modulo=division
remainder) function to determine whether or not the number
of columns would be even. See if you can change the
program to line up the numbers evenly with the extra values
being placed in the fIrst two columns.

10 SCNCLR
20 INPUT II ANY NUMBER II ; N
30 Y=INT(N/3) : MOD=N-(3*Y)
40 FOR X=l TO Y
50 PRINT X,X+Y,X+(2*Y)
60 NEXT
70 IF MOD > 0 THEN GOSUB 100
80 END
100 FOR K-X TO X+(MOD-1)
110 PRINT"K+(2*Y):NEXT K
120 RETURN

You get the idea. Format your ouput in a manner that
best uses the screen and your needs and get that scroll under
control!

Yes-The Commodore 128 Does Do Windows

A fInal formatting command we will discuss is WINDOW.
This command allows you to partition your screen into
separate little screens or 'windows. I You may want your
input in one window and output in another, or you may want
different colors for different windows. The window

99

command can do a lot to make your programs look
professional. To get started, we'll partition your 40 column
screen into four little screens. For each window, you include
the opposite comers for the windows in terms of the X
(horizontal)/Y (vertical) positions. The full screen on 40 and
80 columns can be imagined as :

WINDOW 0,0,39,24 (40 columns)
WINDOW 0,0,79,24 (80 columns)

Every other window falls within those maximum parameters.
Now, let's see how we can program four windows.

10 SCNCLR
20 FOR X=l TO 4
30 READ T1,T2,B1,B2
40 WINDOW T1,T2,B1,B2
50 SCNCLR : PRINT X
60 NEXT X
100 REM ***********
110 REM WINDOW DATA
120 REM ***********
130 DATA 0,0,19,12
140 DATA 20,0,39,12
150 DATA 0,13,19,24
160 DATA 20,13,39,24

Each time through the loop, the program opens another
window PRINTing the loop value in the window. Notice
when you RUN the program how SCNCLR in line 50 clears
only the current window and not the entire screen. If you
LIST the program, you will fmd it is crowded into the lower
right hand comer of your screen. Hit the RUN/STOP and
RESTORE keys simultaneously to get back your full screen
or key in WINDOW 0,0,39,24 <RETURN>.

By adding a 'I' to the end of the WINDOW parameter list,
each time a window is 'opened', it is cleared. That is easier
than putting in SCNCLR every time you open a WINDOW.
The following program shows you how to do that and how to
partition the screen into an "input" and "output" window.
We'll use the opposite comers of the screen and only place the
"1" at the end of the 'INPUT WINDOW' so that you can see
the difference between how it is cleared and the 'OUTPUT
WINDOW' is not

10 SCNCLR
20 GOSUB 100
30 INPUT "WHAT'S UP";WU$
40 GOSUB 200
50 PRINT WU$
60 GOSUB 100
70 PRINT "ANOTHER(Y/N)?"
80 GETKEY A$
90 IF A$ <> "Y" THEN END ELSE GOTO 30
100 REM ************
110 REM INPUT WINDOW
120 REM ************
130 WINDOW 0,0,19,12,1
140 RETURN
200 REM *************
210 REM OUTPUT WINDOW
220 REM *************
230 WINDOW 20,13,39,24
240 RETURN

Summary

The formatting of programs makes the difference between a
useful and not-so-useful application of your computer. The
extent to which your program is well organized and clear, the
better the chances are for simple yet effective programming.
Formatting is more than an exercise in making your
input/output fancy or interesting. It is a matter of
communication between your COMMODORE 128 and you!
After all, if you can't make heads or tails of what your
computer has computed, the best calculations in the world are
of absolutely no use.

In the same way it is important to have your computer tell
you what you want, it is also important to write your
programs so that you and others can understand what is
happening. By using "blocks" it is easier to organize and later
understand exactly what each part of your program does.
Obviously, it is possible to write programs sequentially so
that each command and subroutine is in an ascending order of
line numbers, but to do so would mean that you would have
to repeat simple and/or complex operations which could be
better handled as subroutines. Also, it would be considerably
more difficult to find bugs and make the appropriate changes.
In other words, by using a structured approach to
programming, you make it simpler, not more difficult.

101

Finally, you should begin to see why there are commands for
substrings and all the fuss about TABs,curosr control keys,
POS(O), WINDOW and PRINT USING. These are handy
tools for organizing the various parts in a manner which gives
you complete control over your computer's output What
may at fIrst seem like a petty, even silly command in
COMMODORE 128 BASIC 7.0, upon a useful application,
can be appreciated as an excellent tool. Therefore, as we
delve deeper into your computer, look at the variety of
commands as mechanisms of more efficient and ultimately
simpler control and not a complex "gobbleygook" of
"computerese" for geniuses. After all, if you've got this far,
you should realize that what you thought would be impossible
at the outset is not only relatively easy, it's a lot of fun too.

•
Inside The Mind of Your

Commodore 128

Introduction

The topics of this chapter are more" code like" and contain the
kinds of commands that look frightening. At least that's how
I interpreted them when I fIrst saw them. Many of the
functions can be done with commands we already know, but
many cannot. Still others, as we will see, can be
accomplished better using these new commands. Like so
much else you have seen in this book, what at first may
appear to be "impossible" is really quite simple once you get
the idea. More importantly, by playing with the commands,
you can quickly learn their use.

The first thing we will learn about is the ASCII code. ASCII
(pronounced ASS-KEY) stands for the AMERICAN
STANDARD CODE for INFORMATION INTERCHANGE.
Essentially, this is' a set of numbers that have been
standardized to mean certain characters. In COMMOOORE-
128 BASIC the CHR$ (character string) command ties into
ASCII and can be used to directly output ASCII. As we will

103

see, the CHR$ command is very useful for outputting special
characters.

The next commands have to do with directly accessing
locations in your computer's memory. The fIrst, POKE, puts
values into memory and the second, PEEK, looks into
memory addresses and returns the values there. We will
examine several different uses of these two commands.
These commands are essential for producing certain types of
graphics and sound.

The ASCII Code and CHR$ Functions

In a couple of places we have used control characters in
programs, such as CONTROL-9. In the program all we saw
was something like the following:

PRINT "{INVERSE R}": REM CONTROL-9

What that means is that we enter the CONTROL-9 between
the quote marks, but an inverse "R" is there. Unfortunately,
we cannot see the CONTROL-9 when we list our program to
printer or screen; so we have to use a REM statement to let us
know what's there or remember that an inverse "R" is really a
CONTROL-9. Another way to access any characters we
want, including control characters, is to use CHR.$ commands
and the ASCII code. In APPENDIX A there is a complete
listing of ASCII that you will want to examine. Whenever we
want to access a character, all we have to do is to enter the
CHR$ and the decimal value of the character we want. For
example enter the following:

PRINT CHR$(65) <lUE~>

You got an "A." That's simple enough and not too
interesting. On the other hand, try the following little
program, and I'll bet you couldn't do it without using the
CHR$ function:

10 PRINT CHR$(147) : REM USES ASCII FOR
SCNCLR

20 QU$ = CHR$(34) : REM USES ASCII VALUE FOR
QUOTE MARKS

30 FOR I = 1 TO 20 : PRINT : NEXT : PRINT

CHR$(18);"HIT ANY KEY TO CONTINUE OR ";
40 PRINT QU$; "Q" ; QU$; " TO QUIT ";
50 GETKEY AN$
60 IF AN$ = "Q" THEN END
70 GOTO 10

RUN the program and look carefully. Note the quotes around
the Q. If we tried to PRINT a quote mark, the computer
would think it got a command to begin printing a string.
However, bY defining QU$ as CRR$(34) we were able to
slip in the quote marks and not confuse the output! (Just for
fun, see if you can do that without using the CRR$
command.) Also, did you notice how we began the program?
Instead of using the SCNCLR, we used CRR$(147). We did
not have to put in the quote (") marks around CRR$(147) as
we did with SCNCLR. Likewise, we used CRR$(18)
instead of a CONTROL-9 to set the inverse mode. To see
what different characters you have available, RUN the
following program:

10 PRINT CHR$(147)
20 FOR X = 32 TO 127 : PRINT CHR$(X); NEXT
30 FOR X = 158 TO 191 : PRINT CHR$(X)

NEXT

Voila! There you have all of your symbols. Before we go
on, though, let's see some other symbols simply by pressing
two keys. Hold down the COMMODORE key (in the lower
left hand comer of your keyboard) and press the SHIFf key.
The fIrst set of letters were printed in lower case, and the
symbols, beginning with the "spade" changed to upper case
letters. Thus, depending whether or not the lower case letters
are "on" or "off," CRR$'s will output different symbols.
Now, to watch funny things happen to your screen RUN the

following program.

10 PRINT CHR$(147)
20 FOR X = 0 TO 31
30 PRINT CHR$(X) ;
40 PRINT "WHAT IS THIS";
50 NEXT X

Not much happened since in that range of ASCII (from 0 to

105

31) you ran through the control characters. Your characters
turned colors and got shifted into lower case, and everything
else was invisible. Just press CONTROL-2 to get your white
characters back and COMMOOORE-KEY/SHIFT to pop your
characters back to upper case. To get used to your increased
power over your computer, try the following little programs:

10 PRINT CHR$(147)
20 LB$ = CHR$ (54) : RB$ = CHR$(52)
30 COS = "COMMODORE" + CHR$(45) + LB$ + RB$
40 L = 20 - LEN (CO$)/2 : PRINT SPC(L)i COS
50 FOR I = 1 TO 20 : PRINT CHR$(32) : NEXT

10 PRINT CHR$(147)
20 PRINT CHR$(18); CHR$(28);
30 FOR X - 1 TO 35 : PRINT CHR$(32) NEXT
40 PRINT CHR$(5)
50 REM BEFORE YOU RUN THIS, SEE
60 REM IF YOU CAN FIGURE OUT WHAT WILL

HAPPEN

On the last program, you will get an idea of the use of CHR$
commands with graphics. The red bar was created using
CHR$(32), a space, after the color red had been set with
CHR$(18) <CONTROL-9> and CHR$(28) <CONTROL-3>.
In the next chapter on graphics, we will use the CHR$
command a good deal in creating pictures, charts and graphs.
(By the way, to reset everything to normal, use the
RUN/STOP and RESTORE keys.) The following program is
a handy little device for printing out all of the CHR$ values to
screen. Save it to tape or disk to use as a handy reference
guide to look up CHR.$ values and symbols.

CHR$ MAP

10 PRINT CHR$(147)
20 GOSUB 300
30 FOR I = 33 TO 99
40 IF I = 34 THEN 400
50 PRINT Ii". ="i CHR$(I),
60 NEXT
70 PRINT: PRINT "HIT ANY KEY TO CONTINUE";
80 GETKEY A$
90 PRINT CHR$ (147)

100 GOSUB 300
110 FOR I = 100 TO 127: PRINT Ii". =";

CHR$ (I), : NEXT
120 FOR I = 161 TO 191 : PRINT Ii " =";
CHR$(I), : NEXT

130 PRINT: PRINT : END
300 FOR I = 1 TO 4 : PRINT" CHR$ / S", :

NEXT
310 RETURN
400 PRINT I;" ="i It"~", : REM THERE ARE
2 SHIFT 7'S BETWEEN THE QUOTE MARKS
410 GOTO 60

The program, CHR$ MAP, can be used as a handy reference
for you to look up the CHR$ values of different symbols.
You may have noticed that the program branches to a
subroutine at line 400 ifl = 34. The reason for that is because
once a quotation mark - CHR.$(34) - is encountered, inverse
brackets will be printed in the rest of the output. To avoid
that, we made a "phony quote mark" using two apostrophes
(SHIFf 7). This left a gap between 34 and 35, but it looks a
lot better than all those inverse brackets! Also, we left out
CHR.$ values that would either lock up the display, clear the
screen, change the colors or somehow mess up the output.
See if you can made a program that will include useful CHR.$
values (such as CONTROL-9 and colors) but not destroy the
output.

Programming With ESC - CHR$(27)

A tmal area where you can have some fun with CHR.$ is to
use the ESC sequences from your editor. Since ESC is a
special key that cannot be part of a program line, the only way
to use it is from the immediate mode. However, with
CHR.$(27), it's possible to incorporate ESC into your
program. The following program shows how to use the ESC­
V and ESC-W sequences to scroll up and down your screen.

10 PRINTCHR$(147)
20 PRINT"HI THERE PROGRAMMER"
30 FOR X=l TO 23:PRINT CHR$(27)+"W";:NEXT
40 FOR X=l TO 24:PRINT CHR$(27)+"V";:NEXT

Experiment with CHR.$(27) to see what else you can do. Try
out the various editor sequences to fmd what is possible.

107

POKES and PEEKS
Looking inside your Commodore-128's Memory.

At first you won't have too many uses for POKES and
PEEKS, but as you begin exploring the full range of your
computer's capacity, they will be used more and more.
Basically, a POKE command places a value into a given
memory location and a PEEK command returns the value
stored in that location. For example, try the following:

POKE 2048, 255 : PRINT PEEK (2048) <FUE~>

You should have gotten "255" since the POKE command
entered that value into location 2048 and PRINT PEEK
(2048) printed out the value of that address. That's relatively
simple, but more is going on than storage of numbers. The
key importance of POKE and PEEK involves what occurs in
a given memory location when a given value is entered. In
some locations nothing other than the storage of the number
will occur, as in our example above. However, with other
memory locations, very precise events occur. What we will
do in the remainder of this section is to examine some of the
more useful locations for POKEing and PEEKing in your
COMMODORE-128. We will not be getting into the more
complex elements of POKEs and PEEKs, however.

=A TALE OF TWO NUMBER SYSTEMS=

When using POKEs and PEEKs, we use decimal numbers
for accessing locations. However, much of what is written
about special locations in your PROGRAMMER'S
REFERENCE GUIDE available for your COMMODORE-128
is written in HEXADECIMAL, generally referred to as HEX.
Since we've used decimal notations for counting all our lives,
it seems to be a "natural" way of doing things. However,
decimal is simply a "base 10" method of counting and we
could use a base of anything we wanted. For reasons I won't
get into here, "base 16", called HEXADECIMAL is an easier
way to think about using a computer's memory, and that's
why so much of the notation we see is in HEX. HEX is
counted in the same way as decimal except it is done in
groups of 16, and it uses alphanumeric characters instead of
just numeric ones. You can usually tell whether a number is
HEX since they are typically preceded by a dollar-sign (e.g.

$45 is not the same as decimal 45), and often there are
alphabetic characters mixed in with numbers. (e.g. FC58,
AAB, 12C). The following is a list of decimal and
hexadecimal numbers.

Decimal Hexadecimal
0 $0
1 $1
2 $2
3 $3
4 $4
5 $5
6 $6
7 $7
8 $8
9 $9
10 $A
11 $8
12 $C
13 $D
14 $E
15 $F
16 $10

As you can see, instead of starting with double digit numbers
at 10, hexadecimal begins double digits at decimal 16 with a
$10. In the major memory locations of interest in your
COMMODORE-128 PROGRAMMER'S REFERENCE
GUIDE, both the decimal and hexadecimal numbers are
gIven.

Hex and Decimal Conversion

Your Commodore has some nice built-in statements for
converting between hex and decimal numbers. HEX$
converts decimal values into hexadecimal, and DEC converts
hex into decimal. Try the following from the immediate
mode:

109

PRINT HEX$ (254) <RETURN> Converts to hex.
PRINT DEC ("ABC") <RETURN> Converts to decimal.

Now that you know ABC is really 2748, don't forget it! For
the time being, you probably will not be using hex and
decimal conversion, but it is important to know a little about
it. The following is a handy utility for your program library
that will quickly convert between the two number systems for
you.

Hexconvert

10 SCNCLR : RESTORE
20 FOR X=l TO 5 : PRINT NEXT X
30 FOR X=l TO 2 : READ R$
40 PRINT X;". ";R$: NEXT
50 DATA DECIMAL TO HEX,HEX TO DECIMAL
60 PRINT:PRINT "CHOOSE ONE"
70 GETKEY A
80 IF A=2 THEN 200
90 IF A<>l THEN 60
100 REM **************
110 REM DECIMAL TO HEX
120 REM **************
130 SCNCLR
140 INPUT "DECIMAL VALUE"; D
150 PRINT "HEX VALUE= $";HEX$(D)
160 GOTO 260
200 REM **************
210 REM HEX TO DECIMAL
220 REM **************
230 SCNCLR
240 INPUT "HEX VALUE";H$
250 PRINT "DECIMAL VALUE=";DEC(H$)
260 PRINT : PRINT "HIT ANY KEY"
270 GETKEY A$: GOTO 10
280 GOTO 10

=A ROTTEN TRICK!!=

When you start POKEing and PEEKing into differen
locations of your COMMODORE-128, you will not always
get what you expect. In the decimal addresses from 4864
through 5120, you will be pretty safe since this is free RAM
However, other locations are the "homes" of special routineJ
that will react directly to anything POKEd into them. F01
example, if you POKE 768,255 : PRINT PEEK (768), yoU!
machine will lock up, and not even RUN/STOP anG
RESTORE will unlock it. You have to turn your compute1
off to free it up. Now if you slipped that into one of yoU!
programs and gave it to a friend, it would lock up hi;)
machine, and that would be a Rotten Trick! Of course, YOlA

wouldn't ever do anything like that. Would you?

Now let's take a look at some places to POKE. We will
begin with your text screen.

POKEing the Text Screen

Another use of POKEs is to enter a character to a location on
your 40 column text screen. Each character has a different
value between 0 and 255. Your screen can be envisioned as a
set of addresses on a 40 by 25 grid beginning with decimal
location 1024 ($400) and ending at 2023 ($7E7). That gives
you exactly 1000 locations on your screen where you can
place text. The addresses are contiguous, and by using FOR­
NEXT loops, it is a simple matter to enter sequential lines of
text. Or, using POKEs, you can put text anywhere on the
screen you want. To get an idea of what you will see, try the
following POKEs:

PRINT CHR$(147) :POKE 1190, 1 : POKE 1191,
129 <RETURN>

PRINT CHR$(147) : FOR I = 1880 TO 1890 :
POKE I, 81 : NEXT <RETURN>

PRINT CHR$(147) : FOR I = 1240 TO (1240 +
255) : POKE I, I - 1240 : NEXT <RETURN>

The fIrst line showed different addresses for normal and
inverse "A" located at adjacent addresses. The next exercise
used a sequence of addresses from 1880 to 1890 and put in a

111

white ball at each location. Finally, the third exercise used
adjacent memory locations to insert a sequence of ASCII
characters.

Next, let's take a look at the entire screen area using POKEs
and the letter "A." You will remember that an 'A' is
CHR$(65), but when we want to POKE an 'A', we use 'I'.
That's because screen memory and ASCII are arranged
differently. The screen memory alphabet begins with 1 and
ends with 26, which makes it very easy to remember. Also,
we will see how to use the easily remembered beginning
screen address of hex $400 in a loop, and a mystery
command, SYS.

10 SYS DEC ("COOO")
20 B$="400" : E$="7E7"
30 FOR X=DEC(B$) TO DEC(E$)
40 POKE X,1
50 NEXT X

(Further on in this chapter, we will reveal the mystery of
SYS)

The next program will introduce you to the concept of an
"offset" in programming. Basically, an offset is a number
that will add or subtract a specified value. There are two
different offsets in the program to note. The first is "127"
used in determining the maximum address for the loops
beginning in lines 20 and 40. Since we want to POKE in 128
characters (from 0 to 127), we set our fIrst offset to 127 and
then terminate our screen location at the offset plus our
beginning location. Since we begin at 0 (1024-1), we will end
at 127 since that is our offset. Secondly, we use an offset of
128 in line 50 to get the inverse characters we generated in our
fIrst set. That is because any character we POKE in from 0 to
127 has the inverse same character at a value of the fIrst
character plus 128. Thus, for any character we want to
display in inverse, we simply add 128 to the original POKE
value.

10 PRINT CHR$(147)
20 FOR I = 1024 TO (1024+127)
30 POKE I, (1-1024) : NEXT
40 FOR I = 1424 TO (1424+127)
50 L = 1-1424 : POKE I,L+128 : NEXT

112 ================

60 FOR I = 1 TO 15 : PRINT : NEXT

You might wonder why line 60 was included. Take it out and
see what happens. The reason for that is because the cursor
follows the line numbers in the program and not the screen
locations being POKEd. Therefore, you can POKE in a
screen character from the HOME position on the screen, and
even though the location will output a character to the bottom
of the screen, the cursor will remain near the top. Try it and
see.

In order to easily see what characters are produced with
different values we POKE into screen locations, the following
program allows you to INPUT a value and then displays the
character on the screen for you. Of particular interest in this
program are lines 50 and 60. Line 50 prints out a message
and ends it with a blank instead of a semi-colon. However,
when the program is RUN the character output is right next to
the end of the string we entered in line 50. The reason for that
is we POKEed the output in a screen address right next to the
end of our string. We would have placed a semi-colon,
comma or blank at the end of line 50 and the output would
have been in the same place. Try it and see.

10 PRINT CHR$(147)
20 PRINT CHR$ (19) : PRINT: PRINT INPUT

"ENTER A NUMBER FROM 0 TO 255-> "; X
30 IF X > 255 THEN 20
40 PRINT CHR$(19) : FOR I = 1 TO 11 PRINT
: NEXT
50 PRINT "THE CHARACTER FOR"; X ; "IS"
60 POKE (1504 + 25), X
70 PRINT: PRINT: CHR$(18); "HIT ANY KEY TO

CONTINUE OR '0' TO OUIT";
80 GETKEY HK$
90 IF HK$ < > "0" THEN 10

The Color Screen

In addition to being a text screen memory map, there is a color
screen as welL You might think of the color screen overlayed
on the text screen with a different beginning address. It
begins at 55296 ($D800) and ends at 56295 ($DBE7). By
POKEing one of those locations, it is possible to change the
color of the character. The concept is the same as for

113

POKEing characters except colors are entered. This next
program runs through the 16 colors for you:

10 SCNCLR
20 FOR Y=O TO 15
30 S=1024 : C =55298
40 POKE S+Y,35 : POKE C+Y,Y
50 NEXT Y

Each little pound sign is a different color. For changing just
the color of certain characters without changing all of them,
these POKEs can come in handy. Also, using an inverse
space (160), it is possible to create low resolution lines. The
following program draws a red line across the top of the
screen.

10 SCNCLR
20 FOR X=O TO 39
30 POKE DEC("D800") + X,2
40 POKE DEC("400")+X,160
50 NEXT X

For a more interesting effect, the following program runs the
gamut of colors and characters.

10 SCNCLR
20 BS=DEC("400") : BC=DEC("D800")
30 FOR X=O TO 999
40 C=C+1 : IF C > 255 THEN C=1
50 POKE X+BS,C : POKE X+BC,C
60 NEXT

Accessing Machine Language Subroutines

The SYS command can be a useful tool in speeding up your
programs. A SYS command "runs" a machine-level
subroutine in your computer's ROMs or in memory. In the
COMMODORE 128 PROGRAMMER'S REFERENCE
GUIDE there is a listing of your computer's ROM. In order
to give you a simple and quick reference, we'll put some
useful SYS locations in a little chart for you. You can access
these subroutines using either hex or decimal values. If you
use hex numbers, use the following format:

SYS DEC("Hex numbers" or string$)

Remember, all addresses that are POKEd, PEEKed or SYSed
must be in decimal.

=CHART IT!=

In addition to having labels stuck all over my computer, I
have a number of charts. (For labels, I use the tape kind
made with a label gun.) The nice thing about a chart is that it
has everything from a single category together in one place.
You should make or buy or somehow get your hands on
charts that will summarize SYS's, POKEs, and other handy
locations and addresses. Also, in several computer
magazines, you can find charts. Make copies of the charts
and using rubber cement, paste them to cardboard and keep
them handy. RUN Magazine'S special Annual Edition has a
great chart in it.

Some SYSes for your SYS collection.

SYS 49152 ($COOO) Works like SCNCLR
SYS 49153 ($C001) Don't do this with young
children in the room.

SYS 65357 ($FF4D) Reconfigure to C-64.
(Quicker than G064.)

Try some of the above SYS's in your programs to see their
effect. Here is a program to play with SYS. (BE SURE TO
DSA VE TIIE FOLLOWING PROGRAM BEFORE YOU
RUN IT!!)

10 SYS 49152
20 INPUT "ENTER THE PASSWORD";PW$
30 IF PW$ <> "SHAZAAM" THEN GOTO 100
40 PRINT "YOU GOT IN THE PROGRAM"
50 END
100 REM *******
110 REM GET 'EM
120 REM *******
130 FOR X=O TO 999
140 POKE DEC("400") + X,R
150 POKE DEC("D800")+X,R
160 R=R+1 : IF R > 255 THEN R=O
170 NEXT X
180 SYS 49153

115

Thatl1 flx whomever tries to get into your programs.

Summary

This chapter has taken us beyond the range of more
elementary programming, but we only tested the waters. The
reason for including this chapter in a beginner's book is to
give you greater flexibility and useful applications. You're
not expected to use CHR$, POKE, PEEK and SYS to any
great extent to begin with, but they are important to know a
little about to use on a limited basis. Even if you did not
understand everything we covered, you have the foundations
for expanding your knowledge later.

In the most simple, fundamental sense, CHR$ and ASCII are
"direct" codes to the mind of your Commodore 128. Using
keys and alphanumeric characters is more sensible most of the
time, but sometimes it is actually easier to know what is going
on in a program using CHR$ functions. Control-key
functions are not as clear as CHR$ functions in a program,
for example. Similarly, it is possible to access certain
characters, such as quote marks, only with the CHR$
function.

POKEs and PEEKs are not as vital on the Commodore 128 as
they were on the Commodore 64. For graphics and sound on
the Commodore 64, just about everything had to be PEEKed
and POKEd, but as we will see in the next few chapters, new
BASIC 7.0 statements make it easy create sound and graphics
without a lot of PEEKs and POKEs. However, there will be
some situations where you may flnd them useful. Later,
when you get into more advanced programming, you will use
PEEKs and POKEs, along with SYS a great deal. For the
time being, just think of them as tools for entering into the
realm of machine language and sticking things on the screen.

7
•

Sound and Music

The New Wave

For the oldtimers among you, the powerful new sound and
music commands on the Commodore 128 will make the
creation of sound and music programs much easier.
Therefore, if you are moving up from a Commodore 64,
forget everything you know about POKEing and PEEKing
in sound and music. We'll be going through the various new
BASIC 7.0 statements and commands for generating music
and sound one at a time. We'll then see about creating
something fun and useful with these new keywords.

Six, Sound and SID

There are six statements to be used in sound-making
programs that access the Sound Interface Device (SID) on
your computer. The six statements include:

SOUND
VOL
PLAY

ENVEWPE
TEMPO
FILTER

117

If you're not a music buff or a sound expert, a lot of the
features available on the Commodore 128 might be over your
head. Don't be too concerned about the minute detail of the
sound generating capabilities of your machine. We're going
to concentrate on creating a program that will make it easy for
you to make sounds and experiment with sound so that your
computer will tell you what's going on. You System Guide
has a lot of the technical details you will need. We're going to
concentrate on the programming details to set up a logical­
experimental environment where your computer will tell you
what's going on.

SOUND

The SOUND statement has eight parameters, each separated
by a comma. The following is a shorthand lits of those
parameters;

SOUND,
1. Voice (1-3)
2. Frequency (0-65535)
3. Duration (1=1160 Second)
4. Direction (0-2)
5. Minimum Frequency (0-65535)
6. Step Value (0-32767)
7. Wave Form (0-3)
8. Pulse Width (0-4095)

To get a quick orientation, we'11 just use the fIrSt three
parameters. Also, before we continue, you will need a
statement to turn up the sound on your TV. The VOL (for
volume) statement has a range from 0-15, with the lower
range being silence. Be sure to include it in your SOUND
programs or the sounds you'll hear are the sounds of silence.
Enter the following Sound Tester program to get a feel of
what each parameter does:

Sound Tester
10 SCNCLR
20 VOL 15
30 INPUT "VOICE (1-3) "iV%
40 INPUT "FREQUENCY (0-65535) "iF
50 INPUT "DURATION (1-1/60TH SEC)"iDUR%
60 PRINT
70 PRINT "YOUR SOUND STATEMENT IS" : PRINT

80 PRINT CHR$(l8) "SOUND" V% "," F "," DUR%
90 REM IN LINE 80 CHR$(18) MAKES IT INVERSE
100 SOUND V%,F,DUR%
110 PRINT: PRINT "ANOTHER(Y/N)"i
120 GETKEY A$
130 IF A$="Y" THEN 10 : ·ELSE END

As you experiment with that program, you will find that the
lower the frequency value, the lower the sound tone. Thus,
higher notes are made with higher frequencies and vice versa.
Likewise, the higher the duration value, the longer the sound
was sustained. By printing the final SOUND statement to the
screen, you can write down those you may want to
incorporate in a program. For example, a certain sound may
be appropriate to prompt the user to make an input choice in a
program or indicate a mistake has been made. The following
little program shows how this can be done:

10 SCNCLR
20 INPUT "ENTER A VALUE OF LESS THAN 100"iN
30 IF N > 99 THEN GOSUB 100
40 IF N < 100 THEN PRINT "YOUR NUMBER IS"iN

ELSE GOTO 20
50 END

100 REM ************
11 0 REM SOUND PROMPT
120 REM ************
130 VOL 15
140 SOUND 3,1234,12
150 RETURN

Enter a value of greater than 100 to see what happens. If you
want a softer or harsher reminded, change the values.

The remaining five parameters for SOUND are more
advanced, and while they significantly increase the flexibility
of the sounds you can create, we will spend most of this
chapter with other statements that can be used for creating
musical sounds. Therefore, we'll just do a few more things
with SOUND before getting into the powerful musical
statements in BASIC 7.0.

Sweep. After the duration parameter, there are three sweep
parameters;

119

1. Direction of sweep: Values 0-2.
0= upward sweep;
1=downward sweep
3= osillating sweep

2. Minimum frequency or beginning of sweep (0-65535)

3. Steps of sweep through frequency. (0-32767)

To isolate the effect of the sweep parameters, we'll hold the
voice, frequency and duration parameters constant. This next
program will do that for you:

10 SCNCLR
20 VOL 15
30 INPUT "ENTER SWEEP DIRECTION (0-2)"; SD%
40 INPUT "ENTER MINIMUM SWEEP (0-65535)";SM
50 INPUT "ENTER SWEEP STEP (0-32767)";SS
60 PRINT
70 PRINT CHR$(18) "SOUND 1,3000,30,"; SD%
"," SM "," SS
80 SOUND 1,3000,30,SD%,SM,SS

If you play with that enough, you will get a good idea of the
incredible versatility you have with SOUND on the
Commodore 128. With practice, you can create any sound
you want for everything from musical instruments to rocket
ships.

Wave Control. For the [mal two parameters, we'll just add
a couple of lines to our last program. Holding
voice,frequency and duration constant, we'll vary sweep and
the wave values. The four waveforms are:

1. Triangle (0)
2. Sawtooth (1)
3. Variable Pulse (2)
4. White Noise (3)

The pulse width, the last parameter, varies the width of the
pulse with variable pulse waveforms. Make the following
changes and additions to the last program to test these
parameters.

52 INPUT "WAVEFORM (0-3)";W%
54 INPUT "PULSE WIDTH (0-4095)";WW%
70 PRINT CHR$(18) "SOUND 1,3000,30,"; SD%
.. , .. SM .. , .. SS .. , .. W% .. , .. WW%
80 SOUND 1,3000,30,SD%,SM,SS,W%,WW%

Even if you don't know a lot about sound, the programs will
let you experiment until you learn something! Make notes of
the sounds you think may be useful in programs or ones that
just sound weird. For the more serious and advanced
applications, you will have to venture beyond the scope of
this book. Look at some books on music theory, music and
voice synthesizing and similar topics. Your Commodore 128
has some of the best sound-making capabilities available in a
small computer.

Music to Compute By

We're going to make some music programs, and keep them
simple. However, you will be able to make very complex
music with the Commodore 128. The ENVELOPE statement
has ten built-in instruments, but we access them by the PLAY
statement. To get going we'll look at the different instruments
and how to PLAY different musical notes.

The Play Statement

The PLAY statment has five parameters that can be
remembered by the word VO-TUX (pronounced vo-tux)
which stands for:

Voice
Octave

T -insTrument
U-loUdness
X-fIlter

1-3 (1)
0-6 (4)

0-9 (0)
0-15 (9)
0-1 (0)

We've fixed up VO-TUX a little since the TUX letters didn't
make any sense, but we couldn't do much about making
"filter" into anything with an X.

Making musical notes is done by simply placing the note in
quotes after a PLAY statement. From the immediate mode

121

enter the following:

PLAY "C D E F GAB" <Return>

That will run throught the notes for you with all of VO-TUX
set at the default parameters. Now, let's see about changing
instruments. Just select one of the instruments below and
place the letter liT' and the instrument number within the
quotation marks after the PLA Y statement

Instrument
Piano
Accordion
Calliope
Drum
Flute
Guitar
Harpsicord
Organ
Trumpet
Xylophone

Try the following:

I-yalue
o
1
2
3
4
5
6
7
8
9

PLAY "TS C D E F GAB" <Return>

That will take you through the scales on a trumpet
Experiment with the other instruments as well. Key in the
following program to have a handy example of each
instrument and see how to make your computer do most of
the work for you:

10 FOR E=O TO 9
20 READ IN$(E) : NEXT
30 FOR X=O TO 9
40 SCNCLR : PRINT Xi IN$(X)
50 1$ = "T" + STR$(X)
60 MUSIC$= 1$ + "C D E F GAB"
70 PLAY MUSIC$
80 NEXT
100 REM ***********
110 REM INSTRUMENTS
120 REM ***********

130 DATA PIANO,ACCORDION,CALLIOPE,DRUM
140 DATA FLUTE,GUITAR,HARPSICORD
150 DATA ORGAN, TRUMPET, XYLOPHONE

To change the way the instrument sounds, you change the
values in the ENVELOPE. The ENVELOPE parameters are:

Instrument, Attack, Decay, Sustain, Release,
Wavefonn, Width

Your System Guide shows the default ENVELOPE for each
instrument, but by altering the values of ENVELOPE, when
your instrument is PLAYed, it will sound different. For
example, try the following to test the different piano sounds
you can get by changing the decay default value of 9.

10 SCNCLR
20 INPUT "DECAY (0-15)~;D%

30 ENVELOPE 0,5,D%,0,0,2,1536
40 PLAY "TO C D E F G A a"
50 PRINT: PRINT "ANOTHER(Y/N)"
60 GETKEY A$
70 IF A$ "Y" THEN 20

Experiment with the different instruments and parameters of
ENVELOPE by changing lines 20-40. You can even design
your own instrument

If you want to combine instruments, it is necessary to
coordinate the elements. Using different voices, it is possible
to simulate the sound of orchestrated music. For example, to
play a 'C' on both the trumpet and harpsichord, you could
defIne one as voice one ~d the other as voice 2 and play them
together. Enter the following and you will hear a single note
made of the two instruments playing together:

PLAY "V1 T8 C V2 T6 C" <Return>

Now that's a lot of junk to play one crummy note! Let's see
how we can use some programming tricks to make music for
us.

First of all, we can make strings of our notes and then
PLA Y the string. For example, the following little program

123

will play the scales:

10 S$ = "C D E F GAB"
20 PLAY S$

U sing concatenation and imagination, you can tie together not
only notes but instruments as well. The following program,
for instance, uses all three voices and three instruments to
play the scales, but it takes a lot less programming than
writing in a new voice and instruments before each note.

10 V1$ "V1TO" REM VOICE l/PIANO
20 V2$ "V2T2"
30 V3$ "V3T8"
40 FOR X=l TO 7

NOTES

REM VOICE 2/CALLIOPE
REM VOICE 3/TRUMPET
READ N$: REM GET THE

50 TRIO$=V1$+N$+V2$+N$+V3$+N$
60 PLAY TRIO$
70 NEXT
80 DATA C,D,E,F,G,A,B

Mix the instruments around to see what makes the most
interesting trio.

Commodore Composing

With just a few more parameters, we'll be able to create
Commodore 128 music from sheet music. We know the
notes, and we can create flats with $'sand sharps with #'s.
Note duration is indicated with the first letter of the note

,except for eight notes which uses I instead of E.

Whole
Half
Quarter
eIghth
Sixteenth

Notes can be held an extra half-beat by a C.) dot. Thus a
dotted half note takes the same time as a half and quarter note
combined. Here are two simple rules to remember in lining
up your notes:

124

1. Dots (.) go before the beat lengths (e.g. - .Q)
2. Sharps and Flats go before the notes (e.g. - $ A)

Those rules are important, for in sheet music listings, they
re're exactly the opposite. That is, fIrst the note appears and
the the dot or flat/sharp.

In addition to the note duration, there's an R for Rest and an
M for wait until end of Measure. The R is handled just as the
other notes. Thus a QR would rest the beat of a quarter note
and a WR would rest the length of a whole note.

Octave. The octave defaults to 4 with the fIrst note in an
octave being 'C' (not 'A' as in the alphabet) On your piano
or keyboard, Octave 4 C is known as "middle C." You must
pay very close attention to the octave when converting music
from sheet to computer, for if you forget to change the octave
to the correct level, things get messed up. Look at the
following diagram. It will show how Octaves 3-5 are
arranged. Middle C is in Octave 4, and the next seven notes
below middle C are in Octave 3. On the other end of the
scale, Octave 5 begins with C in the treble scale.

c

Middle
Oetalle 3

Tempo. About the only other matter we need to cover
before writing a song is tempo. The default value for TEMPO
is 8 with a range from 1-255. Higher values speed up the
beat and lower values slow it down. Once TEMPO is set, it
will remain at that speed until RUN/STOP and RESTORE are
pressed or another TEMPO statement is issued. Run the
following program a few times to get a sense of TEMPO:

125

10 INPUT "TEMPO (1-255)";T%
20 TEMPO T%
30 PLAY "e D E F GAB"
40 PRINT "ANOTHER (YIN)?"
50 GETKEY A$
60 IF A$ = "Y" THEN 10

Song Strings

Finally, we can start making computer music from sheet
music. We will use the most simple single-instrument
example to get you going, and then you're on your own.
We'll break the song down into so that it is easier to debug.

First, translate the notes from sheet to paper in a form that can
be used by your computer. The default octave is 4, but no
matter what octave your tune begins in, start by indicating the
octave. Our song will begin with octave 4, but we'll key it in
anyway. We'll use excerpts from "The Birth of the Blues" to
show how this is done.

04
QG
Q$G
QF
HE
IA
QG
IHF

Starting with the octave, list all of the notes with the correct
duration and any flats or sharps. When two notes are
connected, just place both of the beat durations next to one
another, and then indicate the note. This was done with the

last two notes (lliF). Notice how all of this was placed in
B1$ in line 140.

10 SCNCLR
20 PRINT "BE SURE TO TURN UP THE SOUND"
30 PRINT : PRINT "HIT ANY KEY TO BEGIN"
40 GETKEY A$
100 REM ***********
110 REM ENTER NOTES
120 REM ************
130 B1$="04 QG Q$G QF HE IA QG IHF"
140 B2$="IB QA IHG 05 IC 04 QB IHA"
150 B3$="05 ID QC 04 IHB HQB IB IIB 05 IC QD

HQC"
160 BLUES$=B1$ + B2$ + B3$
170 TEMPO 14
180 PLl'I.Y BLUES$

You can do the rest of the song yourself. Don't let BLUES$
get much longer. It'd be a good idea to limit the length of a
concatenated string to be PLAYed to about 100 characters.
Use shorter strings to build a larger one so that it is easy to

isolate the notes in case something does not sound right.
Also, try altering the TEMPO to see if it sounds right

Summary and Review

Making sound and music is a lot of fun, and your
Commodore 128 makes it very easy to do. Using the
powerful words in BASIC 7.0, we began by examining the
many different parameters that go to make up any sound. The
SOUl'll) statement gathers in the various parameters to give
your computer a wide range of sound producing capabilities.

Since it is very difficult to calculate every possible note and
instrument, you built-in BASIC 7.0 sound statements have
special words and strings to create music. Using a series of
special string variables, the PLAY command is allows the
user to easily compose music. Using one's own creations or
sheet music, the Commodore 128 can replicate individual
instruments or whole orchestras. By using the programming
tricks you've learned so far, computer coposing is fun,
educational and useful.

127

•
Using Graphics

Introduction

One of the nicest features of the COMMODORE-128 is its
graphics capability. Basically, there are three kinds of
graphics: (1) Screen Graphics, (2) Bit Map and (3) Sprite
Graphics. Screen graphics are something like text except that
we use a lot more color and figures instead of letters and
numbers. The way the graphics are used, however, we can
access both graphics and text simultaneously. This feature is
especially useful for labeling our graphics, such as charts or
figures we may wish to create. As a matter of fact, if you
have pressed the "Commodore key" andlo shift key and one
of the other keys simultaneously, you may already have
accessed some of your computer's keyboard graphics
capabilities.

Bit mapped graphics take advantage of BASIC 7.0's more
powerful set of statements. These statements allow you to
draw on your screen. With words like DRAW,CIRCLE and
BOX, you can create all kinds of shapes. Furthermore, these
words can be integrated with programs to make graphic

129

charts, animation and other interesting and useful graphics.

Sprite graphics are easy with BASIC 7.0 's sprite statements.
U sing a combination of bit mapped graphics and sprite
statements, commands and functions, you can program these
colorful and animated graphic characters. Once you become
adept at using sprite graphics, there are limitless possibilities
for the creation of colorful animated characters.

Screen Graphics

Screen graphics are very simple to use, since you can enter
figures directly from the keyboard. To create a single figure
all you have to is to PRINT that figure in the same way you
would a letter or number. For example, if you,

PRINT "{SHIFT-Z}"

you will get a diamond figure. However, to create more
interesting graphics, you will want to enter commands from
the Program Mode. One way this can be done is to write a
series of PRINT statements, entering the drawing as you go
along. For example, let's make a graphic playing card. We'll
keep it simple and program a two of spades. (It would be a
good idea to SA VE this program to disk or tape, as well as the
others in this section. SA VE them under different file names
since, even though some will have the identical results, they
are programmed differently.)

10 SCNCLR
20 PRINT "{SHIFT-U} {7 SHIFT-Dis} {SHIFT-I}"
30 PRINT "{SHIFT-G} 2 {SHIFT-A} 5 SPACES

{SHIFT-H}"
40 PRINT "{SHIFT-G} 7 SPACES {SHIFT-H}"
50 PRINT "{SHIFT-G} 3 SPACES {SHIFT-A} 3

SPACES {SHIFT-H}"
60 PRINT "{SHIFT-G} 7 SPACES {SHIFT-H}"
70 PRINT "{SHIFT-G} 3 SPACES {SHIFT-A} 3

SPACES {SHIFT-H}"
80 PRINT "{SHIFT-G} 7 SPACES {SHIFT-H}"
90 PRINT "{SHIFT-G} 5 SPACES 2 {SHIFT-A}

{SHIFT-H}"
100 PRINT "{SHIFT-J} {7 SHIFT-Fl s } {SHIFT­
K} "

When you are ftnished writing the program you should be
able to see a "Two of Spades" on your screen - even before
you RUN the program. When you do RUN it, the screen will
clear and a "Two of Spades" will appear in the upper left hand
corner of your TV/monitor. In the same way, you can draw
anything else you want with the different shapes and
characters on your keyboard. REMEMBER, to get the ftgure
on the right side of the key, use the SHIFf key, and to print
the characters on the left side of the key, use the
COMMODORE key. Let's take another look at our "Two of
Spades" and see if we can improve the program. First, note
that lines 40, 60 and 80 are identical as are lines 50 and 70.
Instead of having to re-write those lines, let's use our
GOSUB commands, treating the repeated lines as
subroutines. Using your editor, change line 40 to line 200
and line 50 to 300. Now, add a colon and RETURN after
lines 200 and 300. Now, change lines 40, 60 and 80 to read
GOSUB 200, and lines 50 and 70 to read GOSUB 300. Add
line 110 END. The program should now look as follows:

10 SCNCLR
20 PRINT "{ SHIFT-U} {7 SHIFT-D's} {SHIFT- I} "
30 PRINT "{SHIFT-G} 2 {SHIFT-A} 5 SPACES

{SHIFT-H}"
40 GOSUB 200
50 GOSUB 300
60 GOSUB 200
70 GOSUB 300
80 GOSUB 200
90 PRINT "{SHIFT-G} 5 SPACES 2 {SHIFT-A}

{SHIFT-H}"
100 PRINT "{SHIFT-J} (7 SHIFT-F's) {SHIFT­
K} "
110 END.
200 REM **********
210 REM CARD SIDES
220 REM **********
230 PRINT "{SHIFT-G} 7 SPACES {SHIFT-H}"
240 RETURN
300 REM ******
310 REM SPADES
320 REM ******
330 PRINT "{SHIFT-G} 3 SPACES {SHIFT-A} 3

SPACES {SHIFT-H}"
340 RETURN

131

Now that didn't save a lot of programming time, but if you
begin to think of screen graphics as you would any other
program, you will want to look for shortcuts to save both
memory space and minimize programming redundancy.
Now, to see how easy it is to change the two of spades to a
three of hearts, using your editor, change the 2 of spades in
lines 30 and 90 to a three of hearts - 3 (SHIFf-S), and the
spade in line 300 to a heart Now change line 60 from
GOSUB 200 to GOSUB 300. This time when you RUN the
program, you have an entirely different card and all you had
to do was to make a few changes. Try out different suits, and
see if you can make an entire deck.

=EDIT IT!!=

If you did not use your editor to change the above lines, you
are working too hard! All that is required when you edit a line
is to enter the changes and hit RETURN. To change a line to
a different line number, simply enter the new line number
over the old line number. For example, to change line 40 in
our original "Two of Spades" to line 200, simply use the
cursor key to walk up to line 40, place the cursor over the
"4", enter "200" and press RETURN. When you liST the
program, line 40 will still be there in its original form, but
there will now be a line 200 identical to line 40.

Coloring Your Graphics

If all of the graphics we did were in the two shades of blue on
your screen, it would be pretty dull. However, if you do not
have a color TV or monitor, the colors will appear as different
shades of black and white or green (if you have a green screen
monitor). The different color patterns will create different
density in the lines and figures you create. If you have
something other than a color TV or monitor, it is best to
experiment with white {using CHR$(5) or CTRL-2} until
you get used to the commands. Later when you get used to
the line patterns created on a non-color screen, you can mix
them for different effects. Assuming you have a color screen,
it might be necessary to adjust your TV/monitor to get the
proper colors. One way we can do that is to make a color test
chart program. The following program uses only half of your
COMMOOORE-128's range of colors, but that IS because we
can only access half using the keyboard or CHR$ commands.

132 ;;;;;;;;;;;;ii

We'll get to the second half of your colors in a bit, but for
now, we'll make our color chart so that you can adjust your
TV set or monitor.

10 SCNCLR
20 FOR X=l TO 8
30 READ C(X) : NEXT X
40 DATA 5,28,30,31,144,156,158,159
50 FOR L=l TO 40 : L$=L$+" " : NEXT L
60 FOR BAR=l TO 8
70 PRINT CHR$(C(BAR»
80 PRINT CHR$(18)L$
90 NEXT B
100 C$="CHR$ COLOR CHART"
110 PRINT SPC(20-LEN(C$)/2)C$

Run the program and adjust your set. Once that's done, we
can begin doing more with different colors.

=Back to Normal=

Since we will be changing the screen to all kinds of colors,
remember, all you have to do to get it back to normal is to
press the RUN/STOP and RESTORE keys simultaneously.

Let's go back to our "Two of Spades" program. Since spades
are black, let's turn our card from light blue to black. To do
that, LOAD your "Two of Spades" program into memory and
add the following line:

15 PRINT CHR$(18); CHR$(144)

That was easy. Do the same with the "Three of Hearts"
program, but instead of using CHR$(144) use CHR$(28) for
red. Play with the different colors for a while to see what you
ge. The following chart shows the color and its associated
CHR$ value.

Color
White
Red
Green
Blue
Black

CHR$ Value
5
28
30
31
144

133

Purple 156
Yellow 158
Cyan 159

Now let's make a simple bar graph using a combination of
screen graphics and a little text at the bottom of the screen.

10 SCNCLR
20 INPUT "TITLE OF PLOT"; T$
30 PRINT : PRINT : INPUT "HOW MANY PLOTS (1-
7)"; P% : IF P% > 7 THEN 10
40 FOR C = 1 TO P% : READ C(C) : NEXT C
50 FOR I = 1 TO P%
60 PRINT "VALUE OF PLOT'" ; I ; : INPUT "(1-
20)"; P (I) : IF P(I) > 20 THEN 60
70 NEXT I
100 REM ******
11 0 REM OUTPUT
120 REM ******
130 SCNCLR : S=4
140 FOR I = 1 TO P%
150 PRINT CHR$(19)
160 FOR V = 0 TO (20 - P(I)) : PRINT NEXT

V

170 FOR PT = 1 TO P(I)
180 PRINT CHR$ (18) ; CHR$ (C(I)); SPC(S)

CHR$(32) ; CHR$(32) : NEXT PT
190 PRINT CHR$(5) ; TAB(S) ; I : S=S+4
200 NEXT I : PRINT CHR$(28); : FOR LN = 1 TO

39 : PRINT CHR$(100); NEXT LN
210 L = 20 - LEN(T$)/2 : PRINT CHR$(5);
SPC(L); T$
220 GETKEY A$
300 REM *********
310 REM COLOR DATA
320 REM **********
330 REM CHR$ COLOR CODES EXCEPT FOR BLACK
340 DATA 5, 28, 30, 31, 156, 158, 159

RUN the program and see how nicely you can present data
graphically. The program is severely limited in that it only
does a maximum of 7 plots and values from 0 to 20. It is
simple to change the number of plots above 7. All you have
to do is to change the trap value to a higher number, change
the number of colors, change the offset (S variable) and make
the bars narrower by using 1 CHR$(32) in line 180.

134 ii;;;;;;;;;;;;;;;

Changing the values to above 20 requires more sophisticated
manipulations, however. This is because, 20 represents the
maximum length of a vertical plot and still puts in the material
at the bottom of the screen. U sing a 2 bar plot, we will
examine how to enter any range of numbers we want

10 SCNCLR
20 PRINT: PRINT: INPUT "MAX VALUE->":MV
30 N = l:NN = MV : REM FOR MORE PRECISE

CALCULATIONS LET N = .1
40 IF NN > 20 THEN N = N + l:NN = MV / N:

GOTO 40
50 FOR I = 1 TO 2
60 PRINT "PLOT VALUE": I: : INPUT PV (I)
70 PV(I) = INT (PV(I) / N)
80 NEXT I

90 REM *** END INPUT BLOCK ***
100 SCNCLR: : FOR PL = 1 TO 2
110 C$ = CHR$(32) + CHR$(32) + CHR$(32) +

CHR$(32) : REM MAKING BARS 4 SPACES WIDE
120 PRINT CHR$(19): FOR V=O TO (20-PV(PL»
: PRINT: NEXT
130 FOR PT = 1 TO PV(PL) : PRINT CHR$(18);

CHR$(28): SPC(PL * 10): C$: NEXT PT
140 NEXT PL
150 FOR LN = 1 TO 39 : PRINT CHR$(30);

CHR$(100): : NEXT
160 PRINT CHR$ (5)
170 PRINT SPC(9); "PLOT 1": SPC(5): "PLOT
2":

180 GET KEY A$

In order to understand what happened, we will go over the
significant lines and explain each.

1. In line 30 the variable NN was defined to equal the
maximum value (MY) entered in line 20.

2. In line 40, the crucial line for creating a \,roportional
scale, NN is compared with 20 to fmd if the maxImum value
is ~reater than 20. If it is greater, then the counter variable N
is Incremented by 1 and NN is re-defined to be the value of
MY divided by N and looped back to the beginning of the line
for another comparison. As soon as the value of N increases

135

to a point where the maximum value, MY, divided by N is not
greater than 20, the loop exits. Whatever the value of N is at
that time will be used in the rest of the program to divide any
value entered

For example:
The value of MY is established to be 100. Since 100 is

greater than 20, 1 is added to N and 100 is divided by 2
resulting in the value of NN equaling 50. Since 50 is still
larger than 20, N is incremented to 3. When MY is divided
by 3, the result is 33.33. Again it is larger than 20; so there is
another loop. When N is equal to 4, MV divided by N equals
20. This time, when the comparison to 20 is made, it is
found that NN is not larger than 20 and so the line is exited
and the value of N is established at 4. No matter what value
is entered, as long as it does not exceed the maximum value,
there will be no errors since all plot values PV (1), etc., will
be divided by 4. Since 100 is the maximum value to be
entered, 20 is the maximum value that will be charted

3. Two values for PV (I) are entered in line 60, and in line
70, PV(I) is divided by N. The !NT command is introduced
to provide an integer (whole) number for charting.

4. In line 110, C$ is defmed as the concatenation of 4
spaces, CHR$(32). This is to make our graph bars 4 spaces
wide.
5. Lines 120 through 140 chart are plots, very much like was
done in our fIrst chart program.

=Precise But Slow=

We incremented N by 1 each time we passed through our test
loop in line 40. If we wanted to get a finer value, we could
have incremented N by .1 or .01 or even .00001! This would
give us a nearer minimum value by which to divide PV(I) and
still keep it proportional. However, it would take longer for
the loop to find the minimum value of N. Change the
program to see the different results in the charts. The smaller
the increment, the closer to the top of the chart the maximum
value will appear, but the longer the program will take to
execute.

COLOR. To make life a lot simpler, BASIC 7.0 has a
statement COLOR that colors things for you. With a

modification of the program that drew color bars for you,
we'll look at all 16 colors using the COLOR statement. First,
thought, let's look at the parameters of color:

COLOR What gets colored, Color itself

There are seven color sources (what gets colored) and 16
colors. First let's take a look at some examples in the
immediate mode and then look at all the colors in our bars:

Colored Number
Background 0
Foreground 1
Multicolor 1 2
Multicolor 2 3
4O-col border 4
Character 5
80-col bkgnd 6

This next program lets you step through the sources and see
what they change. Each time the program pauses, hit any key.

10 SCNCLR
20 FOR X=O TO 6
30 COLOR X,X+4
40 PRINT "THIS IS SOURCE"jX
50 GETKEY A$
60 NEXT X
100 REM **************
110 REM BACK TO NORMAL
120 REM **************
130 COLOR 5,2 : REM CHARACTER
140 COLOR 0,1 : REM BACKGROUND
150 COLOR 4,14 : REM BORDER

Now let's take a look at all 16 colors for your Commodore
128. Depending on whether you used 40 or 80 columns,
your results will be different (We have been sticking with 40
columns since more users have TV sets, and color monitor
users can get 40 columns as well.) The following shows the
numbers associated with different colors:

Color(4Q)
Black
White

Number
1
2

Color(SQ)
Black
White

137

Red 3
Cyan 4
Purple 5
Green 6
Blue 7
Yellow 8
Orange 9
Brown 10
LtRed 11
Dark Gray 12
MedGray 13
Lt Green 14
Lt Blue 15
Lt Gray 16

Dark Red
Lt Cyan
Lt Purple
Dark Green
Dark Blue
Lt Yellow
Dark Purple
Dark Yellow
LtRed
Dark Cyan
Med.Gray
Lt Green
Lt Blue
Lt Gray

Using your editor, modify the CHR.$ Color Chart program
using COLOR so it looks like the following:

10 SCNCLR
20 FOR L=l TO 40 : L$=L$+"" NEXT L
30 FOR BAR=l TO 16
40 COLOR S,BAR
50 PRINT CHR$(18)L$
60 NEXT BAR
70 C$="COLOR CHART 16"
80 PRINT SPC(20-LEN(C$)/2)C$

Animation

We have spent a good deal of time working on charts in
screen ~raphics, but it is important to see the practical
applications of such graphics. Often users simply see screen
graphics as something to draw mosaic pictures on and nothing
else but, as we have seen, it is possible to make very good
practical use of them as well. Now let's have a little fun with
animation before going on to POKEing graphics in the screen.
Animation in screen graphics can be used in games and for
special effects. However, we will only touch upon some
elementary examples to provide you with the concepts of how
animation works. Basically, by placing a figure on the
screen, covering it up and then putting it in a new position,
you can create the illusion of moving figures. It works in
exactly the same way as animated cartoons. A series of
frames are flashed on the screen sequentially. Even though
each individual frame has a stationary figure, by rapidly

flashing a series of such frames, the figures appear to move.
Your computer does the same thing. For example, the
following little program appears to bounce a ball in the upper
left hand corner:

10 SCNCLR
20 PRINT "{SHIFT-Q} " : REM SPACE BETWEEN

SHIFT-Q AND SECOND QUOTATION MARK
30 FOR I = 1 TO 100 : NEXT
40 PRINT CHR$ (19) : PRINT" '{SHIFT-Q}" :REM
SPACE BETWEEN FIRST QUOTATION MARK
AND SHIFT-Q
50 FOR I = 1 TO 100 : NEXT
60 PRINT CHR$(19) : GOTO 20

What appeared to be a moving "ball", was actually a figure
being placed on the screen, erased, and then replaced in a
different location. Now, let's do the same thing on the
vertical axis and use cursor movement within our program.
Also, just for fun, let's add some sound and special effects.

10 SCNCLR : REM ** BEGIN ANIMATION BLOCK **
20 FOR I = 1 TO 12
30 PRINT TAB(20); " {SHIFT-Q} {UP-CURSOR}" :
REM A WHITE AND INVERSE BALL WILL APPEAR ON

YOUR SCREEN
40 FOR J = 1 TO 50 : NEXT J : REM DELAY LOOP

TO SLOW MOVEMENT
50 PRINT TAB(20); "{SPACE}" : REM PUTS

SPACE WHERE BALL WAS
60 PRINT : REM FORCE DISPLAY DOWN ONE LINE
70 NEXT I
80 GOSUB 200
90 PRINT TAB(20); "*,, :
REM *** END ANIMATION BLOCK ***
100 END
200 REM *************
210 REM SOUND EFFECTS
220 REM *************
230 SOUND 3,90,10,0,2000,3000,3,3
240 RETURN

By experimenting with different algorithms, you can create a
wide range of effects. If you have played arcade games with
movement and sound, you now have an idea of how they

139

were created. Now, go ahead and start working on that
SUPER SPACE BLASTER ALIEN EATER game.

PO KEing In Color

This section shows you how to POKE in individual color and
characters onto your screen. You can skip this section if you
want since you can do everything using graphic statements;
however, it will help you learn a lot about your 40 column
screen memory and color maps.

First, we will see how to change the background color and
border of our screen using POKE instead of the COLOR
statement, and then we will examine the screen and color
memory maps in the COMMODORE-128 to put anything
anywhere in any color on our screen. To begin, let's go back
to our "Two of Spades" program. Now, we already noted
that the card should be black instead of light blue, but every
card player also knows that "green felt" is the correct
background for the "table." To change the background and
border colors, we use the following POKES:

POKE 53281, (0-15) Background Color
POKE 53280, (0-15) Border Color

Load your "Two of Spades" into memory, press CTRL-1 to
change the drawing color to black, and now POKE 53281,5.
When you RUN the program now, you will have a black card
on a green background. Since the borders of card tables are
made of wood, let's change the border to brown with a POKE
53280,9. There's our black two of spades on what looks
more like a card table! (To get everything back to normal,
remember just to press RUN/STOP and RESTORE.) It is
quite simple to change the colors of the background and
borders. The following are the color codes for the 16 colors
you can POKE in (Notice they are one off from the COLOR
codes).

o BLACK
1 WIDTE
2 RED
3 CYAN

4 PURPLE
5 GREEN
6 BLUE
7 YELLOW

8 ORANGE
9 BROWN
lOLTRED
11 GRAY

12DKGRAY
13LTGREEN
14LTBLUE
15LTGRAY

To get used to what's available, the following program gives

140 ==============_

you a quick trip through the various background and border
colors.

10 SCNCLR
20 BG = 53281 : BD = 53280
30 INPUT "BACKGROUND COLOR " . B1 : IF B1 > ,
15 THEN 30
40 INPUT "BORDER COLOR"; B2 IF B2 >
15 THEN 40
50 POKE BG,B1 : POKE BD,B2
60 GOTO 10

When you RUN the program, experiment with different text
colors as well by pressing CTRL and keys 1 through 8. You
will fmd that certain text colors are more or less clear with
certain background colors. (White on white is very difficult
to read!) You may have noticed that we were able to change
the border and background colors to 16 different hues, but we
still can only get 8 colors for our keyboard characters. To
access all colors for our keyboard characters, we will have to
understand the COMMODORE-128's screen and color
memory maps. As you know, your screen is a 40 by 25
matrix. Each element of the matrix is represented by an
address in your computer's memory. Your screen's memory
map begins at 1024 and ends at 2023, giving you 1000
locations to put something on the screen. By POKEing these
locations with different values, you are able to place
characters on the screen anywhere you want. Each character
has a code, very much like CHR$ codes, except the code
numbers are different, and rather than PRINTing them, you
POKE them. For example, the code for the letter "A" is "1."
If you POKE a location between 1024 and 2023 with "1" an
"A" will appear there. For example, clear your screen and
POKE 1475,1. In the middle of your screen, a white "A"
appears. But note the location of your cursor. It is still near
the top of your screen. That is because you did not PRINT
the letter at the location of the cursor, but instead you accessed
a memory location. To watch these memory locations fill up
with "A's" enter the following from the Immediate Mode:

FOR I = 1024 TO 2023 : POKE I, 1 : NEXT

Now to see the different codes, key in the following little
program that will give you a run-through of the codes in the
middle of your screen:

141

10 SCNCLR
20 FOR I = 0 TO 127
30 POKE 1484, I
40 FOR J = 1 TO 200 : NEXT J : NEXT I

Now let's take an animated tour or our screen. We'll start
with location 1024 and travel with an arrow (code 62) to
location 2023.

10 SCNCLR
20 BG = 1024 : ES = 2023
30 FOR I = BG TO ES : POKE I, 62 : FOR J = 1

TO 5 : NEXT J : POKE I, 96
40 FOR K = 1 TO 5 : NEXT K : NEXT I

To create animation on our screen, we fIrst POKEd an arrow,
gave it a short delay, then POKEd a space (code 96) in the
same location, gave it a short delay, and then went on to the
next memory location. Using memory screen locations, we
have far more power over characters and animation, for we
can go from any point to another without having to worry
where the cursor is. Let's go back to our bouncing ball, but
this time do it with POKEs.

10 SCNCLR
20 FOR I = (1024 + 20) TO 1984 STEP 40
30 POKE 1,81 : FOR D = 1 TO 10 NEXT D
40 POKE I,96 : FOR X = 1 TO 10 : NEXT X
NEXT I
50 FOR I = (1984 + 20) TO 1024 STEP -40
60 POKE 1,81 FOR D = 1 TO 10 NEXT D
70 POKE 1,96 : FOR X = 1 TO 10 : NEXT X

NEXT I
80 GOTO 20

Note that we started with the top left comer and added an
offset of "20" to put the ball in the middle of the screen. Then
we reversed the process in line 50. If you look on your
screen memory map in Appendix C, you will see that 1984 is
the bottom left comer of your screen. Now let's look at the
color memory map. It begins at location 55296 and ends at
location 56295. Again, it is 1000 locations, and think of it as
an overlay on your screen map. The upper left hand corner of
your screen map is 1024 and on your color map it is 55296.
First, we will POKE in a character on your screen map, and
then a color for that character on your color map.

142 ==============;;;;;

POKE 1024,81 <FUE~>
POKE 55296,8 <FUETURN>

First the ball appeared, and then it was colored orange, a color
you did not have for your characters before now. Now at this
juncture, you may be asking yourself,"How in the world am I
expected to figure out one of a thousand screen locations, then
one of 127 character codes and then superimpose a thousand
different color map locations with one of 16 colors on top of
the screen map and get it in the correct place?" Actually, it is
not as difficult as it sounds, and like everything else having to
do with such calculations, let your computer do the work!
The following is a step-by-step outline of how to set up a
program to do your calculations using variables.

BS = 1024 <-Beginning location of your screen map.
BC = 55296 <-Beginning location of your color map.
CS = XXXX <-Current location (with XXXX being a
number from 1024 to 2023) of your character on the
screen.
OF = CS - BS <-Your offset based on the difference
between your current location and the starting location on
the screen map.
CC = BC + OF <-Color map location to place color.
Cl = XX <-Character code for screen character with
XX being a value from 0 to 127.
C2 = XX <-Color code with XX being a value from 0
to 15.

Essentially, the way to determine the mutual location for the
screen and color map is to have your computer count the
number of locations between the beginning of the map and the
current location. Since both maps use sequential addresses,
the same offset can be used for both maps. The following
program uses the above variables and allows you to place
characters anywhere you want them.

10 SCNCLR
20 BS = 1024 : BC = 55296
30 INPUT "SCREEN LOCATION (1024-2023)" ;CS
40 INPUT "CHARACTER CODE (0-127)"; C1
50 OF = CS - BS : CC = BC + OF
60 INPUT "COLOR CODE (0-15)"; C2
70 POKE CS,C1 : POKE CC,C2

143

80 GET A$: IF A$ = "" THEN 80
90 GOTO 10

Play with the program until you get used to the idea of what
codes give you different characters and colors in various
locations. Once you're finished, try the following program to
give you a "Beaded Curtain" and show another way to create
effects with color using programmed POKEs.

10 SCNCLR
20 BS = 1024 : ES = 2023 : REM BEGINNING AND

ENDING ADDRESSES OF SCREEN MAP
30 BC = 55296 : EC = 56295
40 FOR I = BS TO ES : POKE I, 81 : NEXT I
50 FOR C = BC TO EC STEP 2 : POKE C,8 :
NEXT C
60 FOR NC = (BC + 1) TO EC STEP 2 : POKE
NC,4 : NEXT

70 FOR C = BC TO EC STEP 2 : POKE C,5 :
NEXT C
80 FOR NC = (BC + 1) TO EC STEP 2 : POKE
NC,6 : NEXT
90 GETKEY S$
100 SCNCLR

Suppose you don't want to have to look up every character
you key in. Let's say you want to write your name or a chart
heading or anything else simply by using an INPUT statement
and the keyboard. Well, you can use the screen map and
POKE in characters. To do this, we will have to learn a new
command, ASC. The ASC command converts the firsT
character of a string to a CHR$ code. For example, the
ASCII code for an "A" is 65. If you keyed in

PRINT ASC (" A")

You would get,

65

Now since the CHR$ values won't do you any good for
POKEs, we will have to convert the CHR$ value to a POKE
value. If you look at your screen display codes and ASCII
and CHR$ codes, you will see that the ASCII alphabet begins
at 65 and the screen codes at 1. To convert one to the other,
we simply add or subtract 64, depending on which way we

IM __ ~~~~~~~~~~~~~_

want to convert. Since we want to convert ASCII into screen
codes, we will subtract 64 from whatever ASC value we
detennine. For example, key in the following:

10 SCNCLR
20 INPUT "ENTER LETTER FROM A-Z: "; A$
30 A = ASC(A$) : Al = A-64
40 POKE 1024,Al
50 GOTO 20

As you saw, every time you keyed in a letter, that letter would
appear in white in the upper left hand corner of your screen
(location 1024). Now that we know how to get a single letter
in a single location, let's see if we can get entire strings on the
screen. To do this, we must do the following:

1. Define or INPUT our string

2. Break up our string into individual letters so that we can
get the ASCII values for each character. (The ASC command
only reads the leftmost character of a string.)

3. Convert the ASCn values into screen display codes.

4. POKE in the codes.

Using our offset of 64, this means that we will have to use
our MID$ command to examine each character. However,
when we come to a space (ASCII value 32), we will run into
trouble since 32 - 64 is a negative number. To fix that, we'll
set a trap for spaces and define them with the correct POKE
value - which also just happens to be 32! To keep things
simple, we'll use the upper left hand corner of our screen to
print our strings. (Line 140 acts like a GOTO 10.)

10 SCNCLR
20 PRINT: PRINT: INPUT "YOUR NAME:"; NA$
30 BS = 1024 : BC = 55296
40 DIM A (LEN(NA$» , Al(LEN(NA$» : REM
DIMENSION OUR ARRAYS IN CASE THE NAME IS

LONGER THAN 11
50 FOR I = 1 TO LEN (NA$)
60 A (I) = ASC (MID $ (NA$, I, 1» : Al (I) =
A(I) - 64 : REM CONVERT FROM ASCII TO
SCREEN CODE

145

65 IF ASC(MID$(NA$,I,l» = 32 THEN A1(I) 32
67 REM IF ASC(MID$(NA$,I,l» = 46 THEN
A1(I) = 46
70 NEXT I
80 FOR P = 1 TO LEN (NA$) : POKE BS + P,
A1(P) : NEXT P : REM POKE IN THE CODE

100 REM *** CHART COLOR ***
110 INPUT "COLOR CODE (0-15)"; C2
120 FOR C = 1 TO LEN(NA$) : POKE BC +

C,C2 : NEXT C
130 GETKEY W$
140 RUN

Now if you entered a period (.), you got an ILLEGAL
QUANTITY ERROR IN 80. This is because the period, like
the space, has an ASCII value of less than 65. If you want to
fix the program to accept periods, take a look at line 65 where
we trapped spaces. The same was done for periods in line
67. Just remove the REM statement from line 67. That will
fix it for you.

Bit Mapped Graphics

Bit mapped or high resolution graphics, allow you to draw
graphics on the high resolution screen. The default screen
you've been using is the 'text screen', and now you'll move
to the 'bit mapped' or 'high resolution' graphic screen.
Instead of working with character units, you will be working
with little dots of light called "pixels." Your screen is 320
pixels wide and 200 pixels deep. Like your text screen is a 40
x 25 character matrix, your bit map screen is a 320 x 200
pixel matrix. This section examines the statements to use
these graphics.

GRAPHIC. To get to your graphic screen, use the
GRAPIDC statement The two parameters for GRAPIDC are
the mode and the clear option. Of the six modes, we'll be
using Modes 1 and 2, the most. (1=standard bit map,
2=standard bit map with text at bottom.) The second
parameter, the clear option is 0 or 1. A 1 clears the graphic
screen and a 0 does not. To get started, we'll use Mode 2 so
that we can see what we type at the bottom of the screen.
Enter the following:

GRAPHIC 2,1

You'll see the familiar READY. prompt and the cursor at the
bottom of your screen, but try moving the cursor to the top of
the screen. It disappears! That's because only the five
bottom rows in a split screen display text. The rest of the
screen is in the graphics mode.

DRAW. Now that you're in the bit mapped mode, let's take
a look at some drawmg and see what a pixel is. The DRAW
statement allows you to place a pixel (a dot of light) anywhere
on your screen except where your have text if you're in
GRAPHIC 2. To get started, enter the following:

GRAPHIC 2 <Return>
DRAW 1,10,10 <Return>

You should see a white dot in the upper left comer of your
screen. That is a single pixel. Now let's see what we've
done with the DRAW parameters.

1= Bit map color source as foreground
lO=The horizontal or 'x' position of pixel (0-319)
lO=The vertical or 'y' position of pixel (0-199)

Try placing pixels in different screen positions until you can
plot one anywhere you want on the screen. Once you can do
that, try the following little program.

10 GRAPHIC 2,1
20 Y=100
30 FOR X=1 TO 319
40 DRAW 1,X,Y
50 NEXT

Before you run the program, see if you can guess what it will
do. Once you're fImshed, try this next one.

10 GRAPHIC 2,1
20 DRAW 1,0,100 TO 319,100

147

By placing the word TO after the X/Y coordinates and adding
a second set of coordinates, you can use DRAW to draw a
line. It's a lot faster too. See if you can draw a vertical line
and a horizontal line with DRA W .. TO.

BOX. Before you start drawing things with DRA W, we'd
better take a look at a few of other words that will help out.
First, there's BOX that makes (would you believe?) boxes
and rectangles. It works just like DRAW, except you provide
the opposite coordinates of the box or rectangle you wish to
draw. Try this.

10 GRAPHIC 2,1
20 BOX 1,10,10,100,100

Practice make some different shapes on your own as you did
with DRAW, and then try the following program:

10 GRAPHIC 1,1
20 FOR X=10 TO 100 STEP 5
30 BOX 1,10,10,X,X
40 NEXT X

Play with BOX and programs like the one above to see the
designs you can make. Remember to use variable parameters
for graphics just as you would use variables in any other kind
of non-graphics program. Also, try changing colors in your
BOX drawings as illustrated in the following:

10 REM****
20 REM BOX
30 REM****
40 GRAPHIC1,1
50 COLOR1,9 :REM CHANGE FOREGROUND
60 BOX1,20,30,70,130,,1
70 COLOR1,14:REM CHANGE FOREGROUND
80 BOX1,80,100,130,130,,1
90 COLOR1,5 :REM CHANGE FOREGROUND
100 BOX1,140,50,190,130,,1
110 COLOR1,8 :REM CHANGE FOREGROUND
120 BOX1,200,40,250,130,,1

cmCLE. Like BOX draws boxes, CIRCLE draws circles.
However, CIRCLE does a lot more. It can draw ovals
(ellipses), arcs and even octagons and triangles. To get
started, let's look at the minimal parameters of CIRCLE.

CIRCLE COLOR SOURCE, X,Y,RADIUS

The next little program draws a white circle centered at X
=160 and Y =100 with a radius of 50. That puts it in the
center of the screen. The 'circle' is a bit elliptical.

10 GRAPHIC 2,1
20 COLOR 1,2
30 CIRCLE 1,160,100,50

If you add another number after the radius, it will treat it as
the Y radius. The fIrst radius is treated as the X radius For
example add 20 to the parameter list in the above program.

30 CIRCLE 1,160,100,50,20

The second time you run the program, you get an ellipse,
flattened out by the small Y radius. Change the 20 to a 40 to
get a truer looking circle compared with the default circle.

Now to see an arc, we add two more parameters.

CIRCLE CS, X,Y,RX,RY,Begin Arc,End Arc

The default beginning of an arc is 0 and the
end 360. To visualize where the arc begins, let's make a half
circle. Change line 30 to the following:

30 CIRCLE 1,160,100,50,40,0,180

When you RUN the program, you can see where the default
beginning is. Change the zero (0) in line 30 to a 90 and see
what happens. Instead of starting at the 0 position, it begins
at 90 degrees. Change the starting and ending positions in
line 30 and experiment until you can get any arc you want.

Now we want to 'look at the rotation of the circle. We'll need

149

yet another parameter for CIRCLE following the beginning
and ending arc parameters. While we're at it, we might as
well look at the last parameter, the degrees of increment.

CIRCLE CS, X,Y,RX,RY,BA,EA,ROT,INC

First, to see ROTation, change line 30 to the following.
(We're making a complete circle so BA=O and EA=360).

30 CIRCLE 1,160,100,50,40,0,360,50

That will tilt our circle to the left Change the 50 to a 150 and
it will tilt to the right.

Finally, the increment of degrees can be changed. Each
segment of the circle is two degrees. However, a smoother
circle can be made by placing a one (1) in the last parameter
position. To make a less smooth circle and polygons, change
the last parameter to a higher number.

=Quick Change=

To get out of the bit map graphic mode and back in the text
mode so that you can look at yoW' listing, you're supposed to
enter GRAPHIC O. However, it's a lot quicker to make a
?SYNI'AX ERROR and get dropped back into GRAPHIC 0
quickly. A really simple way to do that is to hit the 'equal'
key (=) and the REIURN key. Since the two keys are right
next to each other, it's a quick and dirty way to get back to
GRAPHICO.

PAINT. Another graphic word for bit mapped graphics is
PAINT. This word fills an area with color. All you do is
specify the color source, and the X, Y coordinates in a
surrounded area. For example, the following PAINTs a
triangle for you.

10 REM******
20 REM PAINT
30 REM******
40 GRAPHIC1,1
50 DRAW 1,40,90 TO 270,90
60 DRAW 1,40,90 TO 40,140 TO 270,90

150 iiiiiiiiiiiiii __________________________ _

To paint with different colors within a given area, you can use
the foreground color for one PAINT job and the background
color for another. The following breakfast time example
shows how. (Note: Try changing the parameters on the
following program to get different shapes, colors and sizes.)

10 REM*******
20 REM CIRCLE
30 REM*******
40 GRAPHIC 1,1
50 COLOR 1,2 :REM WHITE
60 CIRCLE 1,160,120,150,60
70 PAINT 1,240,170
80 COLOR 0,8 :REM DRAWING WITH BACKGROUND
90 CIRCLE 0,160,100,60,20
100 PAINT 0,160,100

CHAR. The final graphic word wel1 examine in this section
is CHAR. This statement allows you to place characters on
the bit mapped graphic screen. This IS very useful for
labelling your graphics. For example, add the following two
lines to the end of the last program above:

120 REM PUT THE WORD 'EGG' AT THE TOP OF THE
SCREEN

130 CHAR 0,18,3,"EGG",0

The first three parameters are the color source and X, Y
coordinates of the beginning of the text This is followed by
the string you want printed and finally a 0 or 1 for inverse or
regular printing.

That concludes the section on bit-mapped graphics.
However, don't forget what you've learned so far because
we'll be using a number of these statements in dealing with
sprites and in the last chapter where we'll look at some more
sophisticated tricks with this stuff.

o
151

Sprite Graphics

Sprites are little characters that you can easily animate on your
screen. They are used to create arcade-like games and other
applications where mobile 'translucent' characters are
required. The ability to move over other text and graphics
without disturbing them, give you a lot of flexibility. They've
been used for everything from "menu pointers" to space
ships. Youll really enjoy them on your Commodore 128.

If you've programmed sprites on the Commodore 64, you can
do it the same way on the Commodore 128. However,
BASIC 7.0 has some very powerful words that make sprite
creation and manipulation much easier than the old way. In
fact there are three ways to make sprites on the Commodore
128:

1. Use bit-mapped graphics
2. Use the built-in sprite editor
3. POKE them in (Commodore 64 method)

The third method makes little sense with the new BASIC 7.0
words, and so we won't cover it. Instead we'll concentrate
on using the fIrst two. Since we've just covered using bit­
mapped graphics, let's make a sprite with them and then crar1k:
it up and move it around. We'll make a simple "Sprite Space
Fighter" to buzz some planets we can create.

Step 1. Using bit mapped graphics, we'll make a
simple little character. You are limited to a 24 x 21 pixel
matrix (12 x 21 if multico10r sprites are used.) First, just
draw the character you want to make into a sprite.

Step 2. Once you have drawn your character, you save
it in a string with with SSHAPE. This word is something like
BOX in that you specify the upper left and lower right hand
comers of your sprite. For example, if your character is in
the upper left corner between 0,0 and 23,20, you would
specify,

55HAPE 5$,0,0,23,20

The variable S$ can be any string variable you choose. Let's
get started with out program. Enter the following:

152 iiiiiiOiiiiiiiiiiiiOiiiiiiiiiiiiOiiiiiiiiiiiiOiiiiiiiiiiiiOiiiiiiiiiiiiOiiiiiiiiiiiiOiiiiiiiiiiiiOiiiiiiiiiiiiOiiiiiiiiiiiiiiiiiiiiiiiiiiiOiiiiiiiiiiiiOiiiiiiiiiiiiOiiiiiiiiiiiiOiiiiiiiiiiiii

10 REM *************
20 REM CREATE SPRITE
30 REM *************
40 GRAPHIC 1,1
50 COLOR 1,2
60 DRAW 1,7,6 TO 7,15
70 DRAW 1,19,6 TO 19,15
80 DRAW 1,7,11 TO 19,11
90 CIRCLE 1,13,10,3,2
100 SSHAPE F$,1,1,24,21

At this point, you've created a sprite and gathered it into a
string.

Step 3. Now, we save the sprite into a sprite number.
This is so easy, we'll save two of them. Using the statement
SPRSA V, you save the string into a sprite number. For
example, SPRSAV F$,l saves the sprite defined in F$ as
Sprite 1. Look at the next section where F$ is saved as
sprites 1 and 2.

200 REM ************
210 REM SAVE SPRITES
220 REM ************
230 SPRSAV F$,l
240 SPRSAV F$,2
250 GRAPHIC 1,1

Step 4. Next we'll turn on the sprites. This is easy but
there are eight parameters involved in the statement SPRITE.
For the most part, you'Ujust need the ftrst three which are:

1. Sprite number [1-8]
2. On=1 Off=<>
3. Foreground color [1-16]

Look at this next segment to see how our two sprite were
turned on.

300 REM ***************
310 REM TURN ON SPRITES
320 REM ***************
330 SPRITE 1,1,14 :REM TURN ON SPRITE 1 IN
GREEN
340 SPRITE 2,1,8:REM TURN ON SPRITE 2 IN
YELLOW

If you RUN the program at this point, you can see the yellow
sprite on your screen. (It's over the green one; so you can't
see the green sprite.)

153

Step 5. All that's left to do is to move the sprites.
BASIC 7.0's word, MOVSPR has three parameters to do
that:

1. Sprite number [1-8]
2. Angle [0-360]
3. Speed #[0-15]

There's more to MOVSPR parameters than that, but it's
enough to get started. Go ahead and blast off with this final
segment

400 REM ************
410 REM MOVE SPRITES
420 REM ************
430 MOVSPR 1,70 #4 :REM MOVE SPRITE 1, ANGLE
70, SPEED 4
440 MOVSPR 2,280 #6 :REM MOVE SPRITE 2,

ANGLE 280, SPEED 6

For those of you used to laboriously POKEing in your sprite
information, this method must seem incredibly simple. It is!
Later, in discussing joystick control, we'll return to this
program to examine MOVSPR some more, but for now, let's
add one final segment to this program to provide the right
setting.

500 REM ****************
510 REM ADD SOME PLANETS
520 REM ****************
530 COLOR 2,5
540 COLOR 3,8
550 GRAPHIC3,1
560 CIRCLE 2,120,40,15
570 PAINT 2,134,41
580 CIRCLE 3,10,10,50
590 PAINT 3,10,10
600 COLOR 3,7
610 CIRCLE 3,10,40,70,10,47,200
620 COLOR 3,3
630 CIRCLE 3,10,50,70,10,46,200

Now there you have the makings of an arcade game. If there
were only some way to control the sprite's movement with a
joystick. ...

JOY. For those of you who want to control your sprites or
graphics with a joystick, BASIC 7.0 provides a handy
function called JOY. The function JOY returns the value of
joystick 1 or 2 with JOY(1) or JOY(2). Plug in your joystick
in Port #1 and RUN the following little program:

10 JS=JOY (1)
20 PRINT JS;
30 GOTO 10

Move your joystick around to see what values are returned.
Be sure to press your 'fire' button as well. All values will be
between 0-8 until you press the 'fIre' button. Then you'll get
a 128.

Fortunately, the values JOY returns are in relationship to
angles you can MOVSPR your sprites with. With a center or
neutral value of 0, the value are arranged around the joystick
clockwise from 1 to 8 beginning at the 12 o'clock position.
Let's look at these positions in terms of the angles they
represent:

Joystick Positions and Angles
1=0°

8=315°
7=270° 0

6=225°
5=180°

2=45°
3=90°

4=135°

By aligning the angles of MOVSPR with the associated
joystick values, we can control the direction of the sprites
~lth the joystick. The following subroutine does that for you
m your spnte program.

400 REM ****************
410 REM JOYSTICK CONTROL
420 REM ****************
430 JS=JOY(l)
440 IF JS>127 THEN GRAPHIC 0 END
450 IF JS=l THEN SA=O
460 IF JS=2 THEN SA=45
470 IF JS=3 THEN SA=90
480 IF JS=4 THEN SA=135
490 IF JS=5 THEN SA=180
500 IF JS=6 THEN SA=225
510 IF JS=7 THEN SA=270
520 IF JS=8 THEN SA=315
530 MOVSPR 1,SA #4
535 MOVSPR 2,280 #4
540 GOTO 430

Notice how the value of the joystick was stored in the variable
JS and how that value was transferred into the variable SA
(for 'sprite angle') in lines 450-520.

155

Line 440 tests for the fIre button being pressed. If it is, it
ends the program and goes back to GRAPlllC O.

Using the Sprite Editor: SPRDEF

Your built-in sprite editor is very simple to use for creating
very fine sprites. In fact, if you build a sprite and run it with
the method we've used, you can make detailed changes to
them from the editor. To get going, just enter SPRDEF and
when the editing window appears type in '1 '. Since cyan is a
good color to work with, press CONTROL-4. If there's a
sprite in memory, it will appear in your window. If there is
one there or some garbage, press CLRlHOME and you'll
have a clean editing window. Your System Guide shows you
clearly how to edit sprites, and so we will concentrate on
making programs to save them and load them back into
memory for use. We'll make a multicolored sprite to use as a
double example to 1) use as a sprite which we can work with
in the sprite editor and 2) a multicolored sprite.

Multicolor Sprite Creation. First, to set multicolor 1 and
2, use the SPRCOLOR statement For example, to set light
red and green use the following:

SPRCOLOR 11,6

Multicolor 1 is the fIrst parameter and multicolor 2, the
second. These color cannot be controlled once you are in the
editor. Look up the colors for red and blue and set them for
the example we will use.

To make a multicolored sprite get into the editor with the
SPRDEF command. (Just type SPRDEF and hit RETURN.)
Choose '1' (for sprite #1) and clear the sprite screen with
CLRlHOME. Press 'M' so that you have a double cursor.
Now you're set to make a multicolored sprite. The '2' key
gives you the background color, the '3' key ,multicolor 1 and
the '4' key, multicolor 2. Change colors by pressing
CONTROL or COMMODORE keys 1-8. We'll make a 3-
colored flag; red, white and blue. Press the 2 key until the

top third of the screen is white. The 3 and 4 keys were set
with SPRCOLOR.

Press SlllFT -RETURN and then RETURN to exit the editor.

You've just completed a multicolored sprite. Next we'll crank
it up, fly it around, save it, turn off the computer and then
reload it and fly it some more. First to get it on the screen
enter the following:

10 GRAPHIC 4,1
20 SPRITE 1,1,7,0,0,0,1

Check to make sure that works by RUNning it, and then type
in the next line to fly it

30 MOVSPR 1,180 14

That's all there is to it! Now to write some programs to save
and load them.

Saving and Loading SPRDEF Sprites

To save a sprite, key in the following program.

10 INPUT "SPRITE NAME"iSN$
20 BSAVE (SN$),BO,P3584 TO P4096

The little program will save all eight sprites stored in
addresses 3584 to 4096. The 514 bytes m the addresses
between 3584 and 4096 represent eight 64 byte sprites.
(Actually, the sprites only use 63 bytes in 3 x 21 byte
matrices, but an unused byte is attached.) The beginning
addresses for each sprite are as follows:

~
3584
3648
3712
3776
3840
3904
3968
4032

lliK
$EOO
$E40
$E80
$ECO
$FOO
$F4O
$F80
$FCO

Sprite #
1
2
3
4
5
6
7
8

To save individual sprites use the sprite's starting address and
add 63 to obtain the ending address. For example, to save
sprite 2 only, you would enter,

157

BSAVE "SPRITENAME",BO,P3648 TO P3711

Usually, it's easier to save a block of sprites and then just use
the ones you need when you load them back into memory for
use.

To load a sprite back into memory after you've reset or turned
off your computer, you need only to BLOAD the file. There
is no need to specify addresses. The following little program
will do it automatically for you:

10 INPUT "SPRITE NAME";SN$
20 BLOAD (SN$)

If you have a program that uses different groups of sprites,
you can introduce the above routine to automatically load your
sprites for you. The following program will either save your
sprites created with SPRDEF or load your sprites and put
them on "parade for you."

10 SCNCLR
20 PRINT "LOAD OR SAVE SPRITE (L/S)";LS$
30 GETKEY A$: IF A$="L" THEN 110
40 IF A$= "0" THEN END
50 IF A$<>"S" THEN 20
60 SCNCLR
70 INPUT "SPRITE NAME";SN$
80 BSAVE (SN$),BO,P3584 TO P4096
90 SCNCLR
100 GOTO 10
110 INPUT "SPRITE NAME";SN$
120 BLOAD (SN$)
130 FOR X=l TO 8
140 SPRITE X,1,X+1
150 MOVSPR X,10*8 iX*+5
160 NEXT

Summary

This chapter has covered a lot of material on graphics, and we
didn't even examine the full range of Commodore 128 graphic
words. Be~inning with keyboard graphics, we saw how to
do everything from make graphs to create arcade style
characters and movement with sprites. The powerful and
colorful features of your Commodore 128, make it well suited
for a fIrst class graphics computer.

The most important thing you should have learned in this
chapter is the interaction between programming and graphics.

All of the programming tricks you've learned up to this point
using text can be applied equally well to graphics. Remember
that text is simply one way for you to communicate with your
computer. The text tells you what was calculated or stored in
memory with words. Graphics does the same thing with
other kinds of figures you draw on the screen. Every
programmin~ trick (and then some) are important to use to
create graphics as well. In Chapter 11, there are some more
advanced graphic applications which will demonstrate further
how to program graphics.

159

,
•

All About Files
Introduction

In this chapter we are going to learn more about some
advanced applications with the tape and disk system. We will
be covering two types of files: (1) Sequential Files and (2)
Relative files. Before beginning, I want to point out that the
Commodore 1571 (or 1541) floppy disk system is a very
sophisticated and smart device. For beginners, it can be
difficult to understand some of its more advanced
applications, and there is a very real risk of destroying
programs and data on your disk. Therefore, in this section,
we will take each step slowly, and even at the risk of
redundancy, explain the various functions of commands
dealing with your disk system. Also, we will not be dealing
with the most advanced features of the disk operating system,
for they are beyond the scope of this book. However, we
will be going to a "middle" range of sophistication, and it is
strongly advised for those of you with a disk system to use a
blank formatted disk on which you have not accumulated
programs. By doing so you will not inadvertently destroy
valuable data and programs. (This comes from the voice of
experience, having clobbered numerous disks myself!)

161

Data Files and Your Cassette (Disk users skip this
section)

You can save any kind of data, numeric or string, to tape and
then using a special set of commands we will learn, load that
data directly into your pro?ram. The data are saved in
sequential files, called 'data or 'sequential' files. You can
create a check book program that saves all of your check
entries and balances to tape, make a mailing list that creates,
saves and retrieves names, addresses and telephone numbers,
or even a list of your favorite recipes. In Chapters 1 and 2 we
discussed how to SA VB a program and retrieve it with LOAD
on your COMMOOORE-128 using the Commodore C2N
Cassette Unit. Both of these commands are executed in the
Imniediate Mode. The commands we will now discuss are
executed from the Program Mode, but they too function to
load and save information to your tape. They simply do it in a
different format. To begin, we will review the different
commands for working with data files, and then we will work
with some programs employing these commands:

OPEN, INPUT#, PRINT# and CLOSE

In order to prepare your cassette for reading or writing
information from within a program, the tape file must first be
"prepared" with an OPEN statement. The format is as
follows:

OPEN N,l, (0,1 or 2),"FILE NAME"

1) First, "N" can be any inte~er from 1 to 255 to reference
the file. For example, you Inlght want to reference your fIle
with number 21 (but any number between 1 and 255 would
do just as well); so you would write:

OPEN 21, etc.

2) Second, since the device is the cassette recorder, the
second number would be "1". Your cassette is always
addressed as "1" and your disk as "8."

OPEN 21, 1, etc.

3) Third, your fIle is prepared for reading with a 0, and

writing with a 1 or a 2. If you want to write with an End-Of­
File marker, use a "1", and for an End-Of-Tape marker use a
"2."

OPEN 21,1, o,etc. <-Read a fIle.
OPEN 21,1, 1,etc. <-Write a fIle with an End-Of-File
marker.

OPEN 21,1, 2,etc. <-Write a fIle with an End-Of-Tape
marker.

4) Fourth, provide a reference name for your fIle. For
example, let's say you want to save your check amounts you
wrote, called "CHECKS" . You would write

OPEN21,1,1,"CHECKS"

or

OPEN21, 1,2, "CHECKS"

To read that data, you would write,

OPEN21, 1,0, "CHECKS"

It may appear to be somewhat involved, but once you get
used to it, it is very simple. At the same it, it is quite flexible
as well, since it is possible to open a number of different files
simply by giving them different names. But usually, you will
want to CLOSE a flle before OPENing another. To close a
flle, all you have to do is enter CLOSE and the file number.
In our example, we would enter:

CLOSE21

So while there is a lot to remember in OPENing a fIle, there is
not much when it comes to CLOSEing one. The next
command involves writing data to tape. Using the PRlNT#
command we can do this. The format for PRINT# is

PRINTt,N,D

where "N" is the fIle number and D is the data. For instance,
sticking with our example, to print a number or string to tape,
we would enter:

PRINTt21,etc.

163

If our data were strings, we would enter:

PRINTt21,A$

or if numeric;

PRINTt21,A (or A% for integers)

It is important to remember that PRINT# is not the same as
PRINT, and you cannot substitute a question mark (?) as ;
you can when using PRINT. That is, if you entered ?#,
you'd get an error when you ran the program even though
when you LISTed it, it would appear as PRINT#. Just to
show you, enter the following:

10 ?U,5
20 PRINTU,5

RUN the program, and you will get ?SYNTAX ERROR IN
10. Now, RUN 20, and you will get

?FILE NOT OPEN ERROR IN 20.

The format in line 20 is correct, but since the file is not open
you get an error. Now UST the program, and lines 10 and
20 look identical! This is one case where LIST will not help
in debugging a program. You must remember to write out
PRINT# whenever you use it instead of using the "?"
shortcut

In the same way that PRINT# "prints" data to your tape,
INPUT# "inputs" information into your computer from the
tape. It has the same format as PRINT# using the OPENed
fIle's number and reads in numeric or string variables.

INPUTt21,A (or A% for integer numbers) <- Numbers
INPUTf21,A$ <-Strings

Finally, we have the GET# statement that is formatted exactly
like INPUT#, but like the GET command, it only gets 1
character at a time. However, it can read commas, colons and
other characters that INPUT# cannot. It will not be used very
much since most applications will want more than a single
character, but when you want to read special characters not

available with INPUT#, GET# will come in handy. At this
point we have commands to open a file, read from or write to
a file and close a file. However, before we continue, there is
a special variable, ST, that we have to examine. The variable
ST is reserved for checking your tape to see if it is finished
entering data. If ST = 0, then more data is coming in. The
End-Of-File or End-of-Tape marker has not yet been read.
Therefore, we can loop back to read more data using ST
within an IFrrHEN statement. For example, the following
format can be used

20 INPUT#21,A$
30 PRINT A$
40 IF ST = 0 THEN 20

Line 40 checks to see if there is more data, and if there is , it
loops back to line 20 to get it. Now that we have seen all of
the commands for reading and writing files from and to tape,
let's take a look at an application. We might as well use a
practical application; so we will make a list of our friends'
phone numbers. Whenever we want to call a friend, all we
have to do is read the list from tape. First, we must create a
list to enter names and same them to tape. After we have done
that, we will write a program to retrieve the names and
numbers.

10 SCNCLR
15 REM **********
20 REM ENTER DATA
25 REM **********
30 INPUT "HOW MANY NAMES TO ENTER"; N%
40 PRINT: DIM NA$(N%), PH$(N%)
50 FOR I = 1 TO N%
60 PRINT "NAME#"; I ; : INPUT" (FIRST
LAST)"; NA$(I)

70 INPUT "PHONE(XXX-XXXX)"i PH$(I)
80 NEXT I
100 REM *****************
110 REM SAVE DATA TO TAPE
120 REM *****************
130 OPEN1,1,1,"FRIENDS' PHONES"
140 FOR I = 1 TO N%
150 PRINT#l,NA$(I)
160 PRINT#l,PH$(I)
170 NEXT I

165

180 CLOSE1

To use this program, get a blank: tape, and rewind your
cassette. RUN the program, and you will be prompted to
PRESS RECORD & PLAY ON TAPE when you have
entered all the names and numbers you want. As soon as you
press the play and record buttons, your screen will go blank:
and your tape recorder spindles will begin turning. When all
the information is saved, the recorder will stop and the screen
will reappear indicating that all your data has been saved.
(Tape storage is relatively slow compared to disks, so to save
time it is suggested to use just a few names (3 or 4) at first.)
Now, let's see if everything worked out according to plan.
To do that we need a program to read our data, and we will
use INPUT# to read the names and numbers. Since both the
names and phone numbers were saved as strings, we can do
the whole thing with a single string variable we will call DA$
for "DATA STRING." (Remember to rewind your tape
before RUNing this program!)

10 SCNCLR
20 OPEN1,1,0,"FRIENDS' PHONES"
30 INPUTfl,DA$
40 PRINT DM
50 IF ST = ° THEN GOTO 30
60 CLOSE1

When you RUN this program, you will be prompted to
PRESS PLA Y ON TAPE. When you do so, the screen will
go blank:, and after a bit your text screen will reappear will all
the names and phone numbers you entered. At this point you
may say, "Now just a minute here! I entered that data as two
different string arrays, and this program read only a single
string variable! What happened to the arrays and how was it
possible to get all that information back with a single
variable?" The answer to that question can be seen in how the
data is stored and what our program did. While the file was
OPENed, we INPUT# whatever data came along. As soon as
it was in memory, we PRINTed it with our BASIC PRINT
statement, not the PRINT# statement we use to print
information to tape. The computer did not care whether the
data entered into memory was a name or phone number, only
a string, and as soon as that string was in memory it
PRINTed to the screen. However, since the screen was

blank, we could not see it being printed. In line 50 the
program checked to see if there was more information in the
file and if there was, it simply picked up and printed the next
string, regardless of whether it was a name or phone number.
To test this, simply enter PRINT DA$ from the immediate
mode, and the last entry will be printed to the screen. Now,
let's make our program a little fancier and more useful. If you
use this program to store friends' phone numbers, the list will
eventually cover more than a single screen. Therefore, you
will only be able to see the last screenful of names and phone
numbers. What we need is a program to search for and find a
specific name and then close the me and print the name and
number to the screen as soon as it has been located.

10 PRINT CHR$(147)
20 INPUT "NAME TO LOCATE"iNA$
30 OPEN1,1,0, "FRIENDS' PHONES"
40 INPUTU,DA$
50 IF DA$ = NA$ THEN GOTO 100
60 IF ST = 0 THEN GOTO 40
70 PRINT "NAME NOT FOUND"
80 CLOSE 1
90 END
100 REM **********************
110 REM PRINT OUT NAME AND NUMBER
120 REM **********************
130 PRINT DA$: REM PRINT THE NAME FOUND
140 INPUTf1,DA$: REM GET THE NUMBER
150 PRINT DA$: REM PRINT THE NUMBER
160 CLOSE1

Now you have a handy program for storing names and
numbers to tape and retrieving a single name and number you
want to call. The next problem is updating your me without
having to re-enter all of the names. That is, once you have
made your phone list, you may want to add new names but
you do not want to key in all the names you already have on
your list. Can this be done? Yes, but we have to first read
all the names into memory from tape and then write them back
to tape. There are several ways this can be done, and our
example is simply one way. We will do the following:

1. Load all the names and numbers on the tape into an array.
2. Input the new names and numbers on the end of the array.
3. Rewind the tape and resave the old and new data to tape.

167

10 SCNCLR
20 DIM NA$(30), PH$(30) : REM DIM VALUE

SHOULD BE NUMBER OF NAMES ON LIST PLUS
THE NUMBER OF NAMES YOU WISH TO ADD

30 OPEN1,1, 0, "FRIENDS' PHONES"
40 N = 0 : REM INITIALIZE COUNTER VARIABLE
50 INPUT#l,NA$(N)
60 INPUT#l,PH$(N)
70 N = N+1
80 IF ST = 0 THEN 50
90 CLOSE1
100 REM **************
110 REM ENTER NEW DATA
120 REM **************
130 INPUT "HOW MANY NEW NAMES";NN
140 FOR I = (N+1) TO (N+NN)
150 INPUT "NAME";NA$(I)
160 INPUT "PHONE";PH$(I)
170 NEXT I
200 REM*************************
210 REM COMBINE OLD AND NEW DATA

AND PUT IT ON TAPE
220 REM ************************
230 NP = N + NN : REM COMBINED TOTAL

OF ALL NAMES
240 OPEN 1,1,1,"FRIENDS' PHONES"
250 FOR I = 0 TO NP
260 PRINT#l,NA$(I)
270 PRINT#l,PH$(I)
280 NEXT I
290 CLOSE1

Make sure to rewind your tape as soon as all of the old data
are loaded. In fact, it would probably be a good idea to insert
a couple of lines to remind you. So add,

125 PRINT CHR$(147) : PRINT "REWIND TAPE
NOW! "

127 PRINT : INPUT "PRESS RETURN TO
CONTINUE" ;RT$

That ought to remind you.

168

Programming the Disk
(Cassettes Users skip the rest of this chapter)

The remainder of this chapter examines programs that do
things with your disk system. First, you'll see some
programs that automatically run programs for you. These are
"Menu" programs. After that, we'll look at sequential and
relative files; a real power in your Commodore 128.

You know how to RUN and DLOAD programs from your
disk. You can do the same thing from another program. All
it takes is for the name of the file to be loaded into a variable
name using INPUT, and then the RUN or DLOAD
commands followed by the variable name in parenthesis. For
example, enter the following little program:

10 SCNCLR
20 DIRECTORY
30 INPUT "NAME OF FILE TO RUN "; NF$
40 RUN (NF$)

The program did three simple things:

1. Showed the disk contents.
2. Asked for a fIle name to be entered into

the variable NF$
3. Using the RUN command, executed the

filename in NF$.

The main thing to remember is to place the variable in
parentheses was we did with (NF$).

The following program uses these simple elements, coupled
with WINDOW to make a fancy menu program.

10 POKEDEC("D020"),0
20 SCNCLR
30 WINDOW 0,0,39,5
40 FOR X=l TO 40
50 LN$=LN$ + " " : NEXT
60 LN$=CHR$(18) + LN$
70 PRINT LN$
80 PRINT : PRINT " MENU" PRINT

169

90 PRINT LN$
100 REM ****************
110 REM DIRECTORY WINDOW
120 REM ****************
130 WINDOW 0,6,39,24
140 DIRECTORY
150 WINDOW 0,0,39,5
200 REM ***********
210 REM BACK TO TOP
220 REM ***********
230 PRINT CHR$(17)
240 INPUT "WHICH FILE ";NF$
250 WINDOW 0,0,39,24,1
260 RUN (NF$)

Sequential Files

If you do not have a disk system, you can skip this section
and go on to the next chapter. However, if you are
considering purchasing a disk drive for your COMMOOORE-
128, the following material will be of interest. In many
respects storing data on disks is similar to storing it on tape
except the storage and retrieval process is much quicker. In
fact, all of our examples in the previous section can be
operated with the disk system with only a few minor changes
in the format. Therefore, to get started, we will see how we
can store data to disks using a slightly different format than
we did with tape. To do this we will examine the

DOPEN, DCLOSE, INPUT#, PRINT# and
GET#

commands for.disk.

DOPEN. To open a disk channel; we access the device
number "8" instead of "1" as we did with the tape. Using
OOPEN, though, it is unnecessary to specify which device
number unless it is is a second drive. Allwe need to specify
is the logical file number. We will use #9.

DOPEN#9

Next you need to specify a file name. Whatever you place in
quotes will be written to disk as a sequential file.

170 iii

DOPENt9,"ADDRESS LIST"

You can optionally specify a ",P' within the quote marks to
write a program file, but we won't be doing that. We need
sequential data files. That's all you need preparing to read a
file. However, to write to a file, you need one more
parameter, 'W'. You do that by placing a ",W" after the file
name outside the quotes like this,

DOPENt9,"ADDRESS LIST",W

PRINT#. Once you have OOPENed a fIle, you want to put
something into it. To do this, you use PRINT# followed by
the logical file number. For example, you might want to print
"Cinderella"; so you would enter,

PRINTt9,"Cinderella"

When you PRINT# to your disk, it is just like PRINTing to
your screen. You just channel it to your disk instead of the
screen. Your can PRINT# USING as well with parallel
results on your disk as on your screen.

=All About Buffers=

For years I used buffers but never understood what they
were. Once I realized how simple (and important) they were,
I used them even more. Whenever something is in RAM in
the form of a variable or array element, it is in a 'buffer.' A
buffer is simply a temporary storage area used to organize
input and output. This is especially important when you're
working with your disk system. When you write to your
disk, your first place stuff in a buffer, and then move from the
buffer to your disk. The opposite is also true. When your
read from your disk, you first load the disk information into a
buffer. Buffers are really simple and useful. Take one to
lunch someday.

Usually before you write something to disk, you place it in an
array or variable buffer. Thus, you're more likely to see
something like the following:

PRINTt9, G$ (X)

171

INPUT# & GET#. To get everything back from the disk,
you use INPUT# or GET#. INPUT# reads entire strings
from the disk and GET# reads one byte at a time. Usually,
you'll used INPUT# since your can organize more effectively
with it. Often when you do not know what's in a fIle, or you
want to reconstitute it, GET# is used. We'll write a simple
file and then read it back with INPUT# and GET# to see the
differences.

10 SCNCLR
20 INPUT "WHAT I S YOUR NAME "; NA$
30 DOPENf9,"YOUR NAME"
40 PRINTf9,NA$
50 DCLOSE

You should have a small fIle called, "YOUR NAME" on your
disk. (Better check your DIRECTORY.) In that file is
whatever you entered when asked 'WHAT'S YOUR
NAME?'. Now let's check it out;

10 SCNCLR
20 DOPENf9,"YOUR NAME"
30 DO UNTIL ST : REM NOTE THIS LINE
40 INPUT:/t9,A$
50 PRINT A$
60 LOOP
70 DCLOSE

line 40 put the contents of the fIle "YOUR NAME" in the
variable A$ (a very small buffer) and then A$ was printed to
the screen. Think of disk INPUT replacing keyboard INPUT
when you use INPUT#.

Now look carefully at line 30. The variable ST is a special
reserved variable. It is "activated" when your computer
detects an "End of File" marker. When it is not zero, (IF ST
<> 0), there's still more stuff for you in the file. Thus when
the program hits line 60, it LOOPs back to line 40 to read
your disk some more. The following program uses GET#
picking up only a byte at a time. You'll see the ASCII values
printed next to the letters.

10 SCNCLR
20 DOPENf9,"YOUR NAME"
30 DO UNTIL ST

40 GETf9,A$
50 PRINT A$; ASC(A$)
60 LOOP
70 DCLOSE

Slight changes were made to lines 40 and 50, but the results
are a lot different. Now you can better see what's going on.
The values after your name are just the ASCII values, but at
the bottom is a 13. You may remember that CHR$(13) is a
CR or 'carria~e return.' That is added to the end of a string
you write to disk with PRINT#.

APPEND. Finally, you may want to add something on the
end of a sequential file. BASIC 7.0 uses the APPEND
command to do that. Instead of using DOPEN, you use
APPEND. Since APPEND only writes to the disk, you need
not specify W'; just the logical file number and file name.
For example, if you had a file called "SCORE" and wanted to
add some more to your data file, you would use APPEND
like this,

50 APPENDf9,"SCORES"

Now to see how all of this goes together, we will create an
ADDRESS LIST file with a program called ADDRESS
BOOK. (BE CAREFUL! Do not use the name ADDRESS
UST as a me name for your program. DSA VE the program
as ADDRESS BOOK. The program itself write a file called
ADDRESS BOOK.) We'll examine the program in "bite
sized" (or 'byte sized') chunks and point out what everything
does. First, we'll create a menu and the segments to create
and append our sequential me.

10 SCNCLR
20 RESTORE:CLR
30 FOR 1=1 TO 14 : PRINT"*";:NEXT : PRINT
"ADDRESS BOOK"; : FOR 1=1 TO 14 : PRINT"*";
: NEXT
40 PRINT : PRINT
50 FOR 1=1 TO 5 : PRINT I".":PRINT:NEXT
60 PRINT CHR$(19); : PRINT: PRINT :FOR 1=1

TO 5 : READ D$: PRINT SPC(5);D$:PRINT:NEXT
70 DATA CREATE NEW FILE,ADD TO EXISTING FILE
80 DATA READ ALL FILES, READ SINGLE FILE,

EXIT

173

90 PRINT:PRINT"CHOOSE BY NUMBER";
100 GET A:IF A<l THEN 100
110 SCNCLR
120 ON A GOTO 200,300,400,600,750
200 REM *********************
210 REM *** CREATE A FILE ***
220 REM *********************
230 SCNCLR : PRINT : PRINT
240 INPUT"HOW MANY NAMES";N%
250 DOPENi9,"ADDRESS LIST",W
260 DIM NA$(N%),AD$(N%),CT$(N%),
SA$(N%),ZI$(N%)
270 FOR I=l TO N%:GOSUB 800:GOSUB 900: NEXT
280 DCLOSE
290 GOTO 10
300 REM ****************************
310 REM *** ADD TO EXISTING FILE ***
320 REM ****************************
330 SCNCLR :PRINT:PRINT
340 INPUT "NUMBER OF NAMES TO ADD";N%
350 APPENDi9, "ADDRESS LIST"
360 FOR I=l TO N% : GOSUB 800 : NEXT
370 FOR I=l TO N%:GOSUB 900 : NEXT
380 DCLOSE
390 GOTO 10

In the block beginning with line 200, your program fIrst finds
the number of names to be entered and dimensions string
arrays in line 260. The array will be the buffer fpr input from
the keyboard. (It is a temporary storage area for what you
type in from the keyboard.) The append subroutine (300
block) is almost identical. However, lines 360 and 370 show
you a slightly different way of buffering keyboard input to
disk output In lines 270, 360 and 370 there are GOSUBs
two subroutines beginning in 800 and 900. Let's take a look
at those two subroutines next

800 REM ************************
810 REM *** INPUT SUBROUTINE ***
820 REM ************************
830 PRINT"NAMEi";I;
840 INPUT NA$(I)
850 INPUT "ADDRESS";AD$(I)
860 INPUT"CITY";CT$(I)
870 INPUT"STATE";SA$(I)

880 INPUT"ZIP CODE"iZI$(I)
890 RETURN
900 REM *************************
910 REM *** PRINTf SUBROUTINE ***
920 REM *************************
930 PRINTt9,NA$(I)
940 PRINTt9,AD$(I)
950 PRINTf9,CT$(I)
960 PRINTf9,SA$(I)
970 PRINTf9,ZI$(I)
980 RETURN

The 800 block is the input routine for entering all the
information into a buffer. Once it is in the buffer, you can
write it to the disk with PRINT# routines in the 900 block.
Since both the write and append operations use the same
INPUT and PRINT# sequences, they were placed in
subroutines. It saves a lot of programming time. It is very
simple, and you should think of it in term of these simple
parts.

Now let's get back to where we left off to look at the
subroutines. We were about to examine the block that reads
data stored to a disk. The first one reads the entire me and
prints it all to the screen. The second block, reads a me until
a certain name has been found, and then it writes it to the
screen.

400 REM ***********************
410 REM *** READ SUBROUTINE ***
420 REM ***********************
430 DOPENt9,"ADDRESS LIST"
440 DO
450 GOSUB 1000
460 GOSUB 1100
470 LOOP UNTIL ST
480 DCLOSE
490 PRINT:PRINT"HIT ANY KEY TO CONTINUE"
500 GETKEY A$
510 GOTO 10
600 REM *************************
610 REM *** SEARCH SUBROUTINE ***
620 REM *************************
630 SCNCLR
640 INPUT "NAME TO FIND"iNS$

175

650 DOPEN*9,"ADDRESS LIST"
660 S=l
670 DO WHILE S<>O
680 GO SUB 1000
690 IF NA$=NS$ THEN GOSUB 1100 S=O
700 LOOP
710 DCLOSE
720 PRINT: PRINT : PRINT PRINT "HIT

ANY KEY TO CONTINUE"
730 GETKEY A$
740 GOTO 10
750 END

The two different subroutines illustrate two different ways of
using a DOILOOP to check a "flag." A flag is anything that
will indicate a given condition. The 400 block uses the
reserved variable ST as a flag, and the 600 block uses a
variable called'S' (not reserved). The S variable indicates the
name has been found. Both of these flags force a loop exit.
The DO/UNTIL loop repeats until ST is not zero. The
statement UNTll... ST means until the variable Sf' is not zero.
(We could have put UNTIL ST <>0 as well.) The
DOIWHILE loop repeats while S is not zero. Both block
jump to the subroutines in blocks 1000 and 1100 for.INPUT#
from the disk and output to the screen with PRINT. Let's
now look at them.

1000 REM *************************
1010 REM *** INPUT* SUBROUTINE ***
1020 REM *************************
1030 INPUT*9,NA$
1040 INPUT*9,AD$
1050 INPUT*9,CT$
1060 INPUT*9,SA$
1070 INPUT*9,ZI$
1080 RETURN
1100 REM ************************
1110 REM *** PRINT SUBROUTINE ***
1120 REM ************************
1130 PRINT NA$: PRINT AD$: PRINT CT$i",

";SA$;" "iZI$
1140 RETURN
1150 END

Now that was a long {>rogram! When writing such a
program, it is a good Idea to save your file about every 10-15
lines so that if you accidentally lose it, you can retrieve most
of your work. It is important to note several aspects of this
program, including a new command, CLR. The CLR
command clears all variables and arrays. That is important in
this kind of program since you may want to do different
things with It while it is in memory. For example, you may
want to add to your address list and then locate a single name.
By clearing the variables and arrays every time you go back to
the menu, you will not have incorrect values. Another
important aspect to note is how the program is blocked into
subroutines. Not only does this make it easier to read, but
you can save a good deal of programming time by such
organization. For example, in both the "READ" and
"SEARCH' subroutines, the ."INPUT#" subroutine is used.
Thus, instead of having to key in the INPUT# commands
more than once, the program simply jumps to the single
subroutine. In the next chapter we will add a subroutine to
print out the names and addresses to a printer, and instead of
re-writing the entire program, all it takes is adding on another
subroutine! A final item you may have wondered about is
using a string array for Zip Codes, ZI$(n). Why didn't we
use a real variable? Well, a characteristic of the
COMMODORE 128 we noted was its propensity to drop
leading "O's" with real and integer variables and arrays. If
your Zip Code is 07734, you wouldn't want your computer to
say it was "7734." By using a string array, we retain the
leading "0."

Relative Files

Rrelative files are like containers of equal sizes in which you
store data. If you are familiar with containers in shipping that
use standardized boxes, you will have some idea of how
relative files work. Basically, you first decide how big a
container you will need, based on the maximum size of the
material you will be putting in the box. Since all we can put
into a relative file is strings, the problem is greatly simplified.
Each character in a string takes 1 byte, and there is a 1 byte
"overhead" for each file. The overhead is the carriage return
character automatically placed to mark the end of the record in
'free form' relative fue that we will be using. Therefore, if
your maximum length for a given string is 10, it will be
necessary to allocate a total of 11 bytes : one for each of the

177

ten characters and one for the overhead (As you remember,
a "byte" is a unit of measurement in the Commodore 128's
memory.) All entries into a relative file must be in a string
format,mcluding numbers.

For the most part, the process of creating and reading relative
files looks very much like sequential files, but there are very
important differences. When you DOPEN a relative file, you
must include the length of the file. First, as we did with
sequential files, we DOPEN the file and place the name of the
file in quotes. However, instead of writing the mode, we
indicate the file number and the the (L)ength of our file. The
following example shows the format for DOPENing a relative
file:

DOPEN t1,"NAMEFI",L12

With this statement we can either write to the disk or read
from the disk, depending on what else we place in the
program. Unlike sequential files, we do not indicate whether
the mode is for read or write when we DOPEN a file. Each
record in the above example can be a maximum of eleven
bytes. (Don't forget the overhead!)

RECORD#. BASIC 7.0 has an important statement,
RECORD#, that makes writing relative files much easier than
the old way. RECORD# is used to specify the file and record
number of a given entry. For example, RECORD#1,3
specifies the next entry using PRINT# will be the third record
in a file DOPENed as #1. This feature also allows you to read
a specific record rather than having to search through the
whole file as with sequential files. For example, using
INPUT# or GET# you can specify a certain record to read. In
conjunction with DOPEN the following shows the correct
sequence and format for RECORD#.

10 DOPEN t1,"NAMEFI",L12
20 RECORDU, 5

In the above example, line 20 specifies the next read or write
statement (lNPUT# or PRINT#) will go into a file called
NAMEFI as record number 5.

Since each record number must be specified before you can
write to it, it would seem to be tedious indeed compared with

sequential fIles. However, you can just as well use a variable
in place of a single number and loop through several records.
For example, the following little relative file will allow you to
indicate the number of names you want to put in a relative file
and writes the names as seperate records.

Simple Relative Files: Name Writer

10 SCNCLR
20 INPUT "HOW MANY NAMES TO ENTER";N%
30 DIM NA$ (N%)
40 FOR X=l TO N%
50 INPUT "NAME PLEASE "; NA$ (X)
60 IF LEN(NA$(X)) > 19 THEN 50
70 NEXT X
8 0 REM * * END OF INPUT BUFFER * *
90 REM
100 REM *******************
110 REM WRITE RELATIVE FILE
120 REM *******************
130 DOPENt1, "NAMEFI", L20
140 FOR X=l TO N%
150 RECORDU,X
160 PRINTt1,NA$(X)
170 NEXT X
180 DCLOSE

If you have ever tangled with relative files on the Commodore
64, you will appreciate how much easier it is with BASIC
7.0. That little program takes care of everything you need to
know to create a relative file. Further one you will learn how
to add to relative files and change them. But first, let's read
a relative file. We could read all the records, but let's first
take advantage of the unique characteristic of relative files;
namely, you can read a single file. The following program
allows you to read a single record:

Read Single Relative File

10 SCNCLR
20 INPUT "WHICH RECORD TO READ";X
30 DOPEN t2,"NAMEFI",L20
40 RECORDt2,X
50 INPUTt2,D$
60 PRINT D$

179

70 DCLOSE
80 PRINT
90 PRINT "ANOTHER(Y/N)?"
100 GET KEY A$
110 IF A$="Y" THEN 20

Notice that the same set-up format used for writing records is
used for reading them. The only thing different is the use of
INPUT# in line 50 instead of PRINT#.

Now we're all set to read an entire fIle. You will remember
that ST is a special variable to indicate the end of a fIle. If you
use ST as a flag, your program will shut down at the end of a
single record. Instead of ST, the string character 'x' (the pi
symbol right next ot the RESTORE key on your keyboard) is
a useful flag. A 'x' on your disk means nothing is there, and
you can use the 'x' flag to tell your program to DCLOSE the
fIle. Notice how the following read program does this.

Read All Relative Files

10 SCNCLR
20 X=l
30 DOPEN#2,"NAMEFI"
40 DO
50 RECORD #2 , x
60 INPUTf2,D$
70 X=X+l
80 IF D$ <> "x" THEN PRINT D4
90 LOOP UNTIL D$="x"
100 DCLOSE

Before combining this knowlege into a general program, let's
take a look at a way to read any file we want. The problem
with a "read anything" program is that we also have to specify
the fIle length. This is difficult to remember, for while we can
retrieve the file's name from the directory, we cannot do the
same with m.e's length.

Read Any Relative File

10 SCNCLR
20 DIRECTORY
30 INPUT "NAME OF FILE TO READ" ;NF$

40 INPUT "LENGTH";ML
50 L$= ", L" + CHR$ (ML)

LINE
60 X=l

REM NOTE THIS

70 DOPENf2, (NF$)+L$ REM NOTE THIS LINE
80 DO
90 RECORDf2,X
100 INPUTf2,D$
110 X=X+l
120 IF D$ <> "x" THEN PRINT D$
130 LOOP UNTIL D$="x"
140 DCLOSE

Lines 50 and 70 show the peculiar format to get the length of
the file attached to the file name. Notice also that the variable
containing the file name must be placed in parentheses.

To illustrate how to use relative files, we will make a
program to store clubs and their membership. We will call the
file we create CLUB. This program will create a relative file
that keeps track of the membership of various clubs. All you
need to enter is the club name and the number of members.
Since we want only strings, the number of members will

have to be changed to strings. Furthermore, since a single
record can accept only a single PRINT#, we will concatenate
the strings into a single string.

First we will plan the program. We will need to know the
number of bytes we can use and choose variable/array names:

CLUB$()
M$()
CR
D$()
MU
Total

30 bytes (club name)
4 bytes (membership number)
1 byte

CLUB$+M$()
Not placed in file
35 bytes

There are traps to keep the lengths short enough, and we've
included routines to make sure each file has the same length.
This is called padding. While it is unnecessary with relative
files to pad strings, it is a good practice to do so. Since
everything is going to be tied together in a single big string
when you write a file, when you take out the contents of a
relative file, standard sized parts help rearrange the
information into blocked "fields."

181

Finally, note how we keep an update on the records in the fIle
in the 'CHECK POINTER' block. This ensures that you will
not write on top of existing records as you update your club
list

182

10 SCNCLR
20 DIRECTORY
30 INPUT "(N)EW OR (E) ISTING FILE"iNE$
40 IF NE$="E" THEN GOSUB 500
50 SCNCLR
60 INPUT "HOW MANY ENTRIES"iN%
70 DIM CLUB$(N%),M(N%),M$(N%),D$(N%)
80 FOR X=l TO N%
90 INPUT "CLUB NAME" iCLUB$ (X)
100 IF LEN(CLUB$(X» >30 THEN 90
110 IF LEN(CLUB$(X» <30 THEN GOSUB 300
120 INPUT "HOW MANY MEMBERS "iM(X)
130 IF M(X) >9999 THEN 120
140 GOSUB 400
150 D$(X)= CLUB$ (X)+M$ (X)

''160 NEXT X
170 DOPEN f2,"CLUB",L35
180 FOR X=l TO N%
190 RECORDt2,X+PT
200 PRINTt2,D$(X)
210 NEXT
220 DCLOSE
230 END
300 REM ************
310 REM NAME PADDING
320 REM ************
330 IF LEN(CLUB$(X» < 30 THEN CLUB$(X) =
CLUB $ (X) + " " : GOTO 330
340 RETURN
400 REM **************
410 REM NUMBER PADDING
420 REM **************
430 M$= STR$(M(X» : M$(X)=MID$(M$,2)
440 IF LEN(M$(X» <4 THEN M$(X)="O" + M$(X)

: GOTO 440
450 RETURN
500 REM *************
510 REM CHECK POINTER
520 REM *************
530 X=l

540 DOPEN t2,"CLUB",L35
550 RECORDt2,X
560 INPUTt2,P$
570 IF LEFT$(P$,1) <>"1t" THEN X=X+1:GQT0550
580 DCLOSE
590 PT=X-1
600 PRINT "YOU HAVE"iPTi"RECORDS"
610 PRINT :PRINT "(HIT ANY KEY)"
620 GETKEY A$
630 SCNCLR : RETURN

The conversion of the numeric variable into a string variable
in line 430 is worth noting. Since there is an invisible sign in
front of number, we want to strip it off. Thus, using MID$,
only the string from the second character on is placed into
M$(X). This saves a byte, and when the value is re­
converted back into a number, the invisible sign will
automatically be replaced.

There is a great deal more you can do with files, and this
introductory look at them just scratches the surface. To a
beginner it might look like a lot, but it is just the beginning. It
is possible to make "Data Base" systems to search for
individual records, changes individual records, sort records
and do all kinds of other things with them.

Summary

In this chapter we learned how to save a lot of time by saving
files to tape and disk. Data can be saved to your cassette tape
for use later within a program. This is handy since it allows
you to enter data at one time and then use it later without
having to key in the data allover again. Of course this can be
done within a single program using READ and DATA
statements, but the user is stuck with that program for using
the data. By storing it on tape, it is possible to use it in many
different programs. This is especially handy with sprites you
have created. Using a disk system, it is possible to store data
in sequential files much like saving data to tape. However,
disks access the data much faster than tapes, and it is possible
to have a single program do several different things with data
files on disks. The "File Master" program showed how a
single program could be used to create, append, and read a
single or multiple files. Care has to be taken to keep
everything straight with such a program, but using sequential

183

fIles increases the power of your computer a great deal. The
practical applications of such programs are immense.

I
•

Working Y our Printer
Introduction

By now you should be used to "outputting" information to
your screen, cassette or disk. When you write in PRINT
"HElLO" you "output" to your screen. When you SAVE,
DSA VE or PRINT# something, you "output" to your tape or
disk. In the same way that you access your screen, tape or
disk, you can access your printer. It is simply another
"output" target. However, you cannot DLOAD, INPUT or in
some other way get anything from your printer as you can
from your keyboard, tape or disk. (How are you going to get
the ink off the paper and back into memory?) The procedures
for getting material out to your printer and using your
printer's special capabilities require certain procedures not yet
discussed.

Therefore, while much of what we will examine in this
chapter will not be new in terms of the language of
commands, it will be new in terms of how to arrange those
commands. Also, we will see how we can use the printer in
ways that have been done poorly using the screen. For
example, no matter how long a program listing is, it can be

185

printed out to the printer, while long listings on the screen
scrolled right off the top of the screen into Never-Never land.
Likewise, in Chapter 9, we made a handy little program for
storing friends' names,addresses and phone numbers. With a
printer we can print-out our phone numbers or run off mailing
labels with commands that output information to the printer.

There are a lot of l'rinters on the market for computers.
However, to keep thmgs simple and to show the maximum
use of your COMMODORE-128 with a printer, all examples
will be with Commodore's VIC-iSiS printer. This printer
will provide all graphic and text features you will need, and it
is easily interfaced to the COMMODORE-128 system.
Besides, it is a very inexpensive printer. If you have another
printer and an interface for the COMMODORE-128, then you
will have to rely heavily on your printer's manual.
Unfortunately, many printer manuals are not very good for
beginners since they tend to use highly technical descriptions
of how to interface and operate their printers. Therefore, pay
special attention to the codes used to turn on or off special
features of your printer. This is usually done with a CHR$
command from BASIC, and so, usually all you will have to
do is to follow the instructions in this book using the
appropriate code from your printer's manual.

=Before You Buy a Printer!!=

The most important aspect in purchasing a printer is making
certain it will interface with your COMMODORE-128. Many
times over-enthusiastic salespersons will tell buyers all the
qualities of a printer and naively believe they can be used on
any computer. This is simply not true! In order for a printer
to work with a computer, it must have the proper interface,
and the best printer in the world wi/I not work with your
COMMODORE-128 without such an interface. Therefore,
when you buy a printer other than one made specifically for
your COMMODORE-128, make sure to buy the proper
interface for it. The only certain way to insure the printer
works with a COMMODORE-128 is to have it demonstrated
with your computer. The VIC-1515,vIC-1525 and MPS
1000 printers by COMMODORE will work with the
COMMODORE-128, but otherwise you should have the
printer's ability to work with your computer shown to you.

Printing Text on Your Printer

The ftrst thing you will want to do with your printer is to print
some text in "hardcopy." ("Hardcopy" is a really impressive
term computer people use to talk about print-outs on paper.
Use the term and your friends will be amazed.) Like your
cassette tape and disk drive, it is necessary to ftrst go through
a number of steps to channel information to your printer.
Let's review those steps ftrst. OPEN. First, you OPEN a
channel to your printer. On the VIC-1515, there is a switch in
the back to make the device number 4 or 5. We will use the
"4" in our examples, so check to make sure the switch is
flipped to "4" before proceeding. (Remember on your disk
drive the device number is "8.") The sequence for OPENing
the channel to your printer is to enter a number between 1 and
255 (we'll use lucky "7") and the device number,4. Here's
how:

OPEN7,4

Now your printer is ready to receive instructions to "7", the
logical me number we used. CMD. The CMD command tells
your computer to send output to your printer. You must use
the file number (7 in this case) and not the device number (4).
For example, enter:

CMD7

and you will hear your printer "crank" up and print-out
READY, as it usually prints to the screen. However, you will
notice that it did not print READY to your screen. Now
enter,

FOR I = 1 TO 10 : PRINT : NEXT

and your printer will feed your paper 10 lines, just as it would
to the screen had you not directed output to the printer with
the CMD command. Until you tum off the output to your
printer it will go there instead of your screen.

PRINT#. You will remember that we use PRINT# in
programs where we want to print our information to our tape
or disk. Well, with your printer the same principle applies
also. Let's say that you want to print-out only a few things in
a program and do not want everything going to the printer. If

187

you used CMD everything would go to the printer that would
nonnally go to the screen. However, using PRINT# only the
infonnation following the PRINT# would. For example,
suppose you want to have your screen prompt you with
"Name?" and as soon as you enter the name it is printed to
your printer, you would want to use PRINT#. The fonnat is

PRINTt7, NA$
or

PRINTt7, "CHARLEY HORSE"
or

PRINTt7, 12345

Let's try a little program to print names to the printer to show
how PRINT# can be used in programs where you want to use
both the screen and printer.

10 SCNCLR
20 PRINT : PRINT PRINT "TURN ON YOUR

PRINTER"
30 PRINT : PRINT PRINT "HIT ANY KEY TO

CONTINUE"
40 GETKEY A$
50 SCNCLR
60 OPEN7,4
70 INPUT "NAME TO PRINT";NA$
80 PRINTt7,NA$
90 INPUT "ANOTHER (Y/N) ";AN$
100 IF AN$="Y" THEN 70
110 CLOSE7
120 END

CLOSE. The fmal command in accessing your printer is
CLOSE. As we can see in the above program, it closes the
channel to the printer and turns it "off." For the most part
CLOSE works pretty much the same way as it does with the
tape and disk systems; however, there is an important
protocol involved. Before you CLOSE the channel to the
printer, you must enter PRINT#{fn} first. Therefore, if you
OPEN a channel to the printer, use the CMD command, you
must first PRINT# before issuing a CLOSE command. For
example,

OPEN7,4
CMD 7
PRINT "HELLO HELLO"

PRINT.7
CLOSE7

If you issued the CLOSE command without the PRINT#
command, you would run into problems.

Listing Programs

Since listing programs to one's printer is a good way to de­
bug a program or send it to a friend, it would be convenient to
have a utility program with which we do just that. So, let's
write a program that will list your program to the printer. We
will keep it short so that we can tack it on to the beginning of
a program. To get started, load a program into memory and
then add the following lines:

1 OPEN7,4
2 CMD7
3 LIST 5-
4 END

When you RUN this program, it "turns on" the printer, LISTs
a program from line 5 to the end of the program. When you
are finished, enter PRINT#7 and CLOSE7 to close the
channel and the file. Unfortunately, you cannot "tum off' the
CMD command from within the program using PRINT# and
CWSE as we did using only the PRINT# command. So be
sure to tum it off from the immediate mode after a listing.

CHR$ To The Rescue

The secret to using printers is in understanding what their
control codes mean and how to use those codes. For
example, the following is a partial list of codes provided with
the old CENTRONICS 737 printer:

Mnemonic
ESC,SO
ESC,DC4
ESC,DCI

Decimal
27,14
27,20
27,17

QruU
033,016
033,034
033,021

Hex
IB,OE
1B,13
1B,11

Function
Elongated
Select 16.7
Proportion­
al Print

Now, for most first-time computer owners, that could have
been written by a visitor from another planet for all the good it
does. However, there is important information in those codes
and, once you get to know how to use them, it is relatively

189

easy. To get started, forget everything except the "Decimal"
and "Function" columns. Now taking the first row, we have
decimal codes 27 and 14 to get elongated print. To "tell" your
printer you want elongated print you would use CHR$(27) +
CHR$(I4). To kick that into your printer you would do the
following:

1. OPEN7,4
2. PRINTt7, CHR$(27) + CHR$(14) + "MESSAGE"

If you have a Centronics 737 or 739 printer that would have
printed the string "MESSAGE" in an elongated print.
Likewise, for the condensed printing 16.7 cpi (characters per
inch), you would have entered CHR$(27) + CHR$(20) and
for the proporitonal type face, CHR$(27) + CHR$(17). Once
you get the decimal code, all you have to do is enter that code
to the printer and it will do anything from changing the type­
face to performing a backspace function. With other printers
the same is true, but let's get back to the VIC-I5I5 printer we
have been examining since it was designed with Commodore
computers in mind. As we will see, like the Centronics
printers or any other, the VIC-I515,VIC-I525 and MS 1000
also use CHR$ commands to access the printer's different
abilities. Let's look at the various CHR$ commands
associated with the VIC-I515:

CHRS
10& 13
8
14
15
16
27
145
17
18
146

FUNCTION
Line feed
Graphic Mode
Double width
Back to standard
Address of start print position
Escape (used in conjunction with other codes)
Cursor up
Cursor down
Revme printing
Turn off reverse

To see how the CHR$ functions work, we will use a simple
program that will print-out your name. Since we already
know how to print-out normal text, we will begin with
expanded text. Looking at our chart, we see that CHR$(14)
will expand our print-out; so we will use it in our program.
(Notice the lack of punctuation marks after the comma
following the PRINT#7.)

10 SCNCLR
20 OPEN7,4 : REM OPEN CHANNEL 7 TO DEVICE 4

(YOUR PRINTER)
30 INPUT "YOUR NAME"; NA$
40 PRINT'7, CHR$(14) NA$: REM NOTE POSITION

OF CHR$(14) AFTER PRINT*7
50 PRINT*7, CHR$(15) : REM RETURN TO NORMAL

PRINT
60 CLOSE7

RUN the program and print-out some names and note the
expanded characters. (Try that on your typewriter!) Now we
have not done very much with upper and lower case so far but
in printing text to your printer, there are many times you will
want to have upper and lower case characters. For example,
in printing out names, you may want your printer to print-out,

Captain John W. Smith

instead of

CAPTAIN JOHN W. SMITH

but we need a special CHR.$ command to do thal With the
VIC-1515 printer the CURSOR DOWN mode, CHR.$(17)
will allow us to print upper and lower case. To do this,
change lines 40 and 50 in our above program to the following:

40 PRINT*7, CHR$(17) NA$: REM PRINTS IN
CURSOR DOWN MODE

50 PRINTt7, CHR$(145) : REM RETURNS TO
CURSOR UP MODE

Now, press the COMMODORE key and SHIFT key
simultaneously to put your computer into the upperllower case
mode and RUN the program. If you used the shift key for
upper case and the non-shifted keys for lower case, your
printer gave you both upper and lower case. If you tried that
before we made the program changes, even if you had your
computer in the upperllower case mode, your print-out would
have given you graphic characters for the shifted ones instead
of upper case. Go ahead and try it with the original program
to see for yourself. Another trick is to use both upper and
lower case and the expanded mode together. All that is
required is to change the program so that both CHR$

191

commands are there together. Again, change lines 40 and 50
to the following:

40 PRINTf7, CHR$(17) CHR$(14) NA$
50 PRINTf7, CHR$(145) CHR$(15) : REM RETURN

TO CURSOR UP AND STANDARD PRINT

When you RUN this program, you will see that it is possible
to have more than a single non-standard (Le. non-default)
mode operating simultaneously. On some printers, such as
the EPSON MX-80Ff with GRAFTRAX PLUS, it is
possible to not only have expanded print but also italicized,
condensed, double strike, emphasized and super/subscript
type faces and any combination of them together. Using
CHR$, all of the different type styles can be used separately
or in combination with one another. Finding the "CURSOR
UP/DOWN" mode on other printers, however, may be tricky
since they were not made specifically for the COMMODORE-
128. (Remember to get a demonstration at the store where you
buy your printer!) Now that we have seen different ways to
operate the type faces on the printer, let's do something
practical. We will make a mailing label program for the VIC-
1515/1525IMS 1000 printer. Various label .manufacturers
make adhesive labels with tractor-feed margins so that you
can put them into your printer just like your paper. Our
program will make labels that will print the addressee's name
in expanded upper/lower case, the address in regular
upper/lower case, and the city, state and zip code in upper
case only.

10 SCNCLR : PRINT CHR$(14) : REM SHIFT TO
UPPER/LOWER CASE

20 OPEN7,4
30 INPUT "NAME"; NA$
40 INPUT "ADDRESS"; AD$
45 PRINT CHR$(142) : REM SHIFT TO UPPER CASE
50 INPUT "CITY"; CT$
60 INPUT "STATE"; SA$
70 INPUT "ZIP CODE" ; ZI$
100 PRINTf7, CHR$(17) CHR$(14) NA$
110 PRINTf7, CHR$(15) CHR$(17) AD$
120 PRINTf7, CHR$(145) CT$ ", " SA$ " " ZI$
130 CLOSE7

As you will see when you RUN this program, the screen

shifts to the mode your print-out will be in. This helps the
user see on the screen what he/she will get on the printer.
Note that different CHR$ codes are used to shift the
upperllower case mode on the screen and on the printer. For
example, CHR$(142) shifts the screen to upperllower case
while CHR$(17) shifts the printer to that mode.

In order for the program to be more practical, we will need a
few line feeds at the end of the printing so that your labels can
be properly aligned. Depending on the size of your mailing
labels, you will need a greater or fewer number of line feeds.
Insert the following line into your program and adjust the size
of the loop to align your labels properly.

125 FOR I = 1 TO 3 : PRINT,7 : NEXT
127 REM CHANGE "3" TO THE CORRECT
128 REM NUMBER OF LINE FEEDS FOR YOUR LABELS

In Chapter 9, we promised to insert a subroutine in the "FILE
MASTER" program to print out the names and addresses to
your printer. Well, that's just what we're going to do. To
make the changes, load your "Address Book" program into
memory and make the following additions or changes in the
program. (Good grief! Don't rewrite the whole thing!) First,
change the loop size in lines 50 and 60 from 5 to 6 so that we
can add a printer option to the menu. Now, add,

85 DATA PRINTER OUTPUT

Next, change line 120 to read:

120 ON A GOTO 200,300,400,600,750,1200

Finally, add the following subroutine:

1200 REM *******************
1210 REM *** PRINTER SUB ***
1220 REM *******************
1230 DOPENf9,"ADDRESS LIST"
1240 DO
1250 GOSUB 1000
1260 N=N+1 : LOOP UNTIL ST
1270 DCLOSE
1280 DIM NA$(N),AD$(N),CT$(N),SA$(N),ZI$(N)

193

1290 DOPEN#9,"ADDRESS LIST"
1300 FOR X=l TO N
1310 INPUTJ9,NA$(X)
1320 INPUTJ9,AD$(X)
1330 INPUTJ9,CT$(X)
1340 INPUTt9,SA$(X)
1350 INPUTf9,ZI$(X)
1360 NEXT
1370 DCLOSE
1380 REM ** PRINTER ON **
1390 OPEN4,4
1400 FOR X=l TO N
1410 PRINTJ4,NA$(X)
1420 PRINTJ4,AD$(X)
1430 PRINTJ4,CT$(X)
1440 PRINTJ4,SA$(X)
1450 PRINTJ4,ZI$(X)
1460 PRINT f4
1470 NEXT
1480 PRINTf4
1490 CLO$E4
1500 GOTO 10

Margins

Sometimes you do not want your print-out to begin at the left
hand side of your paper or label. To position the starting
point of your text, you use CHR$(16) and the number of
spaces from the left you wish to begin printing. There are a
number of different ways of doing this, but the most simple to
do this is to fIrst print CHR$(16) and the starting position in
quotes along with what you want printed. You must use a 2
digit number; thus, if you want to begin 5 spaces from the
left, you must indicate it with "05" instead of "5." For
example, try the following:

OPEN7,4
PRINTi7, CHR$(16) "05DOES THIS COMPUTE?"
CLOSE7

As you will see when you execute the above commands, your
printer will only print out "DOES THIS COMPUTE?" and not
the "05" even though it was in quotation marks. That was
because the first two digit number encountered after the

CHR$(16) was the "05." Now add another "5" so that the
line reads,

PRINTf7, CHR$(16)"055DOES THIS COMPUTE?"

and you will get, "5DOES THIS COMPUTE." Thus, after
the second digit everything is treated as information to be
printed out. In some cases you may want to indicate the
number of spaces using CHR$ instead of numbers within
quotes. For example, you may wish to print text at different
positions determined by a loop and want your next position in
relation to the last, and so the position is determined by
CHR$(I), with "1" being the current loop position. This can
be done, but it is tricky because the CHR$ must be the ASCII
value for the number. For example, a "05" looks like this:

CHR$(O) CHR$(53)

Using the above example, you would print,

PRINTf7, CHR$(16) CHR$(O) CHR$(53) "DOES
THIS COMPUTE?"

Therefore, if computing the position using a loop, it is
necessary to determine the position in terms of both the fIrst
and second digit as an offset of the loop value. For most
applications, it is best simply to enter the number of positions
within the quotation marks of the message to be printed.
Before going on to printer graphics, we will examine how to
use positioning in a program. This is useful in making lists
where columns are important. For example, we can make a
list of items for a garage sale. The first column will be the
item for sale, the second column the asking price for the item,
and the third column the actual price for which the item sold.
We will use INPUT statements so that all items can be entered
from the keyboard and used with an actual garage sale. (Who
knows when you will want to use it? So why not make it
useful!)

10 SCNCLR
20 PRINT : PRINT : INPUT "HOW MANY ITEMS"; N%

DIM IT$(N%),AP(N%),SP(N%)
30 PRINT : FOR I = 1 TO N%
40 PRINT "ITEM f"; : INPUT IT$(I)
50 INPUT "ASKING PRINCE"; AP(I)

195

60 INPUT "SELLING PRICE"; SP(I)
70 PRINT
80 NEXT
100 REM *** PRINTER FORMAT ROUTINE ***
110 OPEN7, 4
120 PRINTf7, "ITEM"; CHR$(16) "15ASKING

PRICE";
130 PRINTf7, CHR$(16) "35SELLING PRICE"
140 PRINT#7, CHR$(10) : REM LINE FEED
150 FOR P = 1 TO N%
160 PRINT#7, IT$(P)
170 PRINT#7, CHR$(16) CHR$(49) CHR$(53) "$";

AP(P)

180 PRINT#7, CHR$(16) CHR$(51) CHR$(53) "$";
SP (P)

190 NEXT
200 CLOSE7

There are a couple of things to note in this program. First of
all, notice how we employed CHR$ code to indicate the
positioning of the printed text in lines 170 and 180. The
combination of those codes is the same as the" IS" and "35"
enclosed in quotations in lines 120 and 130. Second, we
used the CHR.$(lO) for a line feed. We could have used
PRINT#7 without any code following it to get the same
results, but there will be times when you may wish to insert a
line feed in the middle of a line and CHR$(1 0) will come in
handy. To really make a neat program, see if you can figure
out how to have the program compute the totals of the asking
price and selling price of the items. Also, it might be an
interesting addition to have a fourth column that keeps a tally
of the differences between the asking and selling prices. This
is something that you should be able to work out on your
own! (Hint: Create a fourth array.)
PRINTING GRAPIDCS Now that we have seen how to print
text, we will look at graphics printing. The most simple
graphics to print are those from the keyboard. Using the
CURSOR UP mode, CHR$(145), we can print out the
graphics from the keys. For example, from the Immediate
mode try the following,

OPEN7,4
PRINT#7, CHR$(145) "{COMMODORE-KEY-B}"
CLOSE7

That will print out a "checkerboard" character just like the one

on the left side of the key. Now, since the default mode is
CURSOR UP, it is unnecessary to enter CHR$(145) every
time you print a graphic character but, just to be sure, you
should have it somewhere in your program. To see all the
different graphic characters from your keyboard, run the
following program:

10 SCNCLR
20 OPEN7,4
30 FOR I = 96 TO 127 : REM CHR$ RANGE OF

SET n
40 PRINT'7, CHR$(145) CHR$(I)
50 NEXT I
60 FOR J = 161 TO 191 : REM CHR$ RANGE FOR

SET '2
70 PRINT'7, CHR$(145) CHR$(J)
80 NEXT J
90 CLOSE7

All of the characters on your keyboard were printed out for
you, but with patience you could have done the same from the
keyboard. The CHR$(145) is a bit superfluous, and you can
get the same results if you remove it. However, if CHR$(l7)
is there, you will have mostly blanks since that is the
"upper/lower" case, or CURSOR DOWN mode

Making Your Own Graphic Characters on the
Printer

Next we will create binary printer graphics. In using
SPRDEF, we used a 24 by 21 matrix to create sprites one dot
at a time. Making characters is similar, but it's a lot easier.
First of all, we will be using a 7 by 7 matrix instead of a 24
by 21 matrix so there are far fewer calculations. The VIC-
1515 printer can actually make graphic characters in 7 by 480
(!) matrix, but we will stick with the 7 by 7 matrix to keep it
simple. To get started, instead of sending you off for some
graph paper, we will make our own graph for our matrix on
the printer, explaining the process as we go along. To begin,
we use CHR$(8) to initiate the graphics mode. Then we
"build" a concatenated CHR$ that contains our graphic image.
Since the bits are added on the basis of the vertical position of
each "pin" in the printer head, we will be adding vertical
"dots" instead of horizontal ones as we did with sprite
graphics. However, we will be using the same concepts as

197

with sprite graphics. The following is an outline of our 7 by
7 matrix:

1
2
4
8
16
32
64
+128

By inserting "dots" into the blanks, we can create a figure,
and this is translated to a way in which the COMMODORE-
128 can understand by a vertical total of the positions the dots
are in and adding 128. For example, if we draw a square, we
would have the fIrst and last columns filled and the top and
bottom rows filled. Beginning with the first column, the
value would be 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128, equaling
255. The next 5 columns would have a dot at the top and
bottom. A dot in the top row would be 1 and one in the
bottom row would be 64, and adding the 128 we would get
193. The last column would be the same as the first, 255.
Therefore, we would want to create a CHR$ that has the
following values:

255 193 193 193 193 193255

for our box figure. To do this we could have a line that reads
as follows:

BOX$ = CHR$(255) + CHR$(193) + CHR$(193) +
CHR$(193) + CHR$(193) + CHR$(193) + CHR$(255)

but that (whew!) would take a lot of time. Instead it would be
a lot simpler to READ in the values as DATA statements as
we did with the sprites and concatenate the string, such as,

FOR I = 1 TO 7
READ GRAPHICS
GR$ = GR$ + CHR$(GRAPHICS)
NEXT
DATA 255,193,193,193,193,193,255

Now let's put it all together into a program.

10 SCNCLR
20 FOR I = 1 TO 7 : READ GRAPHICS
30 GR$ = GR$ + CHR$(GRAPHICS)
40 NEXT
50 OPEN7,4
60 PRINT.7, CHR$(8) GR$
70 CLOSE7
100 DATA 255,193,193,193,193,193,255

When you RUN this program, a little box will be printed.
Nothing very exciting, I admit, but now let's see how we can
use that little box to make a matrix to create new characters.
The following pro~ram will make a 7 by 7 matrix for you and
only requires making a few changes in the above program:

10 SCNCLR
20 FOR I = 1 TO 7 : READ GRAPHICS
30 GR$ = GR$ + CHR$(GRAPHICS)
40 NEXT
50 OPEN7,4
52 FOR Y = 1 TO 7
54 FOR X = 1 TO 7
60 PRINT.7, CHR$(8) GR$;
62 NEXT X
64 PRINTf7
66 NEXT Y
70 CLOSE7
100 DATA 255,193,193,193,193,193,255

If you printed out the 7 by 7 matrix, you can see that, while it
is functional, it really printed more than was necessary. We
only need single-sided dividers between the cells. Besides,
even though having the single box is handy for making all
different kinds of shapes, we might as well create the exact
graphics we need. However, if we let the computer do the
"figuring" for us, it can be relatively simple. To begin we
will break up the task into simple parts. First of all, we know
that a straight vertical line is CHR$(255). We will call it E$
since it "encloses" the sides of our box. We also know that
CHR$(193) will give us a top and bottom to our box, but if
we use it to make a matrix, we will have double lines
separating our rows. Therefore, we will only need a top line
to begin with. That's easy since the top dot is "I" and all we
have to do is add "128" for CHR$(129). We need five of

199

those dots to create our top line, so we will create that with a
FORINEXT loop of 5. (Remember in our 7 x 7 boxes, the E$
figure will take a top position dot at either end.) Finally, at
the end of our matrix we are going to need a bottom line.
Here, instead of of drawing a single bottom line, we will
draw a bottom line of boxes made up ofE$ and CHR.$(193),
the latter to be designated as TB$ (for Ittoplbottomlt

).

Therefore, the plan is to first draw 6 lines of boxes with a top
only and then, for our seventh line, we will draw a row with
both tops and bottoms. It is important to notice that we are
now using graphic figures much larger than our 7 x 7 matrix!
Here's our improved program:

10 SCNCLR
20 E$ = CHR$ (255)
30 FOR I 1 TO 5 T$ = T$ + CHR$(129)

NEXT
40 FOR I 1 TO 5 TB$ = TB$ + CHR$(193)

NEXT
50 OPEN7,4
60 FOR Y = 1 TO 6
70 FOR X = 1 TO 7
80 PRINT#7, CHR$(8)E$ T$
90 NEXT X
100 PRINT#7, E$: REM PUTS AN END ENCLOSURE

ON BOXES
110 NEXT Y
120 FOR X = 1 TO 7
130 PRINTf7, CHR$(8)E$ TB$i
140 NEXT
150 PRINTf7, E$
160 CLOSE7

Now that you have a better idea of what can be created, print
up a batch of matrixes and design some original printer
graphics ! You always wanted your own logo, and now you
can do it! REPEAT THAT GRAPHIC! The final element we
will examine with your printer is the graphic repeat one.
Using CHR.$(26) it is possible to make any number of
graphic characters repeat. However, the format for using
repeat requires some care. Use the following steps:

1. Get into the graphics mode with CHR.$(8)

2. Issue the repeat command with CHR.$(26)

3. Enter the number of repeats within a CHR$ command.
Note: This is different than what we saw with the position
command. You do not put the ASCII code for the number of
repeats, but instead the actual number of times you want a
graphic repeated. For example, if you want a graphic to repeat
20 times, you would use CHR$(20).

4. Enter the graphic character, usually followed by the
CHR$ code for a semi-colon <CHR$(59» so that the
repetition will occur on the same line. Now let's make a
simple program that will give us a "bar" of varying lengths.
This will show how you might begin a program that will
make a bar graph with bars of different lengths to represent
your data

10 SCNCLR : PRINT : PRINT
20 INPUT "LENGTH OF BAR"; N
30 RP$ = CHR$(8) + CHR$(26) + CHR$(N) : REM

GRAPHICS + REPEAT + NUMBER OF REPEATS
40 VL$ = CHR$(255) + CHR$(59) : REM OUR
VERTICAL LINE PLUS A SEMI-COLON
50 OPEN7,4
60 PRINT#7, RP$ VL$
70 CLOSE7

Notice how fast the bar is produced on your printer using the
repeat function. Experiment with the command and mix it
together with other printer commands to produce anything
you want to see in black and white.

Summary

When you got your printer, you may have thought the only
thing you could print was text in the same way a typewriter
does. However, as we saw, that was just the beginning.
Besides printing text, it is possible to generate different style
type faces, position the text wherever you want and even print
graphics. Not only can you print the graphics from the
keyboard, you can also create your own printer graphics.
Typewriters just cannot do that! The secret to using printers
with your COMMODORE-128 is the CHR$ function. In
some ways CHR$'s are used as ASCII code in exactly the
same way as they are when output is to the screen, but in

201

other ways they are used either as special printer functions or,
within certain sequences, to produce print-outs.
Unfortunately, it is not possible to simply access your printer
and have it automatically put what's on the screen onto paper.
However, by planning your program around output to the
printer, just about anything printed to the screen can be
printed to your printer.

•
Program Hints and Help

Introduction

Well, here we are at the last chapter. We've covered most of
the statements, functions and commands used for
programming in BASIC 7.0 on the Commodore 128 and
many tricks of the trade. However, if you are seriously
interested in learning more about your computer and using It
to its full capacity, there's more to learn. In fact, this last
chapter is intended to give you some direction beyond the
scope of this book. First, we will introduce you to the best
thing since silicone - Commodore 128 Users Groups. These
are groups that have interests in maximizing their computer's
use. Second, I would like to suggest some periodicals with
which you can learn more about your Commodore 128
computer. Third, we will examine some languages other
than BASIC· that you can use on your Commodore 128.
BASIC has many advantages, but like all computer languages
it has its limitations, and you should know what else is
available. Next, we will examine some more programs. First,
there will be listings of programs that you may find useful,
fun or both. The ones Included were chosen to show you
some applications of what we have learned in the previous
nine chapters, enhancing what you already know. Then we

203

will look at different types of programs you can purchase.
These are programs written by professional programmers to
do everything from making your own programming simpler
to keeping track of your taxes. Finally, we will examine some
hardware peripherals to enhance your Commodore 128.

Commodore User Groups

Of all of the things you can do when you get your
Commodore 128, the most helpful, economical, and useful is
joining a Commodore 128 User Group. Not only will you
meet a great group of people with Commodore 128
computers, but you will learn how to program and generally
what to do and not to do with your computer. The club in
your area will probably be one with other Commodore
computer users, such as Commodore 64, Amiga, PET and
VIC-20 users. Usually the best way to contact your
Commodore 128 User Group is through local computer
stores. Often stores selling Commodore 128 computers will
have application forms, and some even serve as the meeting
site for the clubs. Other microcomputer clubs in your area
may also have Commodore 128 users in them, but if there is
not an COMMODORE club, join a general computer group.
The help you will get will be worth it. To start your own
Commodore 128 User's group, post a notice and meeting
time and site in your local computer store. Write to one of the
following:

Commodore User Group Coordinator
Commodore Business Machines
1200 Wilson Drive
West Chester, PA 19380

COMPUTEt's Gazette
P.O. Box 5406
Greensboro, NC 27403
Attn: Commodore Users Groups

RUN Magazine
80 Pine Street
Petersborough, N.H. 03458
Attn: Commodore Users Groups

Ask them to publish a notice that you want to start a
Commodore 128 club in your area. Your club will then be

listed in the magazine(s) you write and other people in your
area will soon join up. If you live in an area with just a few
Commodore 128 owners or in a relatively small town, it
would be a good idea to affiliate with one of the larger
groups. Probably the best bet would be to join the following
group:

TORONTOPETUSERSGROUP
Department "D"
1912 A Avenue Road, Suite 1
Toronto, Ontario, Canada MSM 4A1

The Toronto group have over 3000 free programs for the
various computers made by Commodore along with a club
newsletter to keep you informed. The dues are $20, but you
will get back a lot more than that in programs and
information. Another way to get in toucQ with fellow
Commodore 128 users is via a modem Dial up the computer
bulletin boards in your area and look for messages pertaming
to Commodore 128's. Usually, you can get in contact with
other users very quickly this way. (Ask for the PMS {Public
Message System} numbers ,at your local computer store). If
you don't see any references to the Commodore 128, leave a
message for people to get in touch with you.

Commodore 128 Magazines

There are several periodicals with information about the
Commodore 128. Some microcomputer magazines are
general and others are for the Commodore 64/128
specifically. When you're first starting, it is a good idea to
stick with the ones dedicated to the Commodore 64 and128
since there are different versions of BASIC for non­
Commodore 128 computers. When you become more
experienced, you can choose your own, but to get started
there are several good ones with articles exclusively on the
Commodore 128. These are as follows:

Commodore Microcomputers
Commodore Business Machines, INC.
1200 Wilson Drive
WestChester,PA 19380

Commodore Microcomputers is a publication with a wide
variety of articles and programs for the Commodore 128.

205

Here you will find programming techniques, tips for
beginners, new hardware and software available and various
applications. Articles range from the simple to the technical,
and so regardless of your level of expertise, you will find this
extremely useful. Subscriptions are $15.00 per year for 6
issues.

Powerplay
Commodore Business Machines, INC.
1200 Wilson Drive
West Chester, P A 19380

A second magazine for your Commodore 128 is Powerplay ,
a publication dedicated to the more recreational uses of your
computer. The articles and programs in this magazine are
primarily for home uses of your computer, ranging from
games to telecommunications. It is very educational and
helpful for novices. Subscriptions are $15.00 per year for 6
issues.

RUN Magazine
80 Pine Street
Petersborough, N.H. 03458

RUN Magazine magazine has an excellent selection of
programs, reviews, tutorials and articles for Commodore
computers, including the Commodore 128 and 64. The wide
range and high quality of the material in this magazine will be
an immense help to beginners in programming. The popular
column "Magic" is full of interesting and useful tips. The
annual Special Issue includes a programmer's chart and a list
of all the Commodore clubs in the world. Subscriptions are
$19.97 for 12 issues.

Alwy!
45 W. 34th Street- Suite 407
New York, N.Y. 10001

Alwy! has a number of excellent columns, program listings
and even hardware enhancements for the Commodore 128
and 64. There are also excellent review and new product
sections. This is another good magazine to use for building
~p your program library. Subscriptions are $19.95 for 12
Issues.

Info
P.O. Box 2300
Iowa City, Iowa 52244

Info has recently expanded to cover the Commodore 128/64
and Amiga. It has the most comprehensive reviews of
products you can find in any single place for the Commodore
128. If you want to fmd out about a product for your
computer, check this publication fIrst Six issues, $18.

Horizon: A Guide to the Commodore Computer
Horizon Press, Inc.
P.O. Box 06680
Portland, OR 97206

This is a smaller and newer magazine, but it is well organized
and has a lot of good information for your computer. Articles
on CP/M, programs and even stories. It is clean and compact
with a little bit of everything. Subscriptions $19 for 12
issues.

Computers Gazette
P.O Box 5406
Greensboro, NC 27403

Compute! Gazzette is dedicated to the COMMODORE-128
/64 and, to a lesser extent, the VIC-20. Compute!'s Gazette
will provide you with programs and programming techniques

that can be applied to your computer. Additionally, it has
several general articles on programming, hardware and
software that you will find usefu1. Finally, there are a good
deal of bargains on software and peripherals to be found in
the magazine. Subscriptions are $15 for 12 issues.

OTHER USEFUL PUBLICATIONS. Midnight Gazette is a
niftly little Commodore 128/64 review magazine with incisive
comments you should look for in computer stores. In
addition to the above magazines, there are several others that
you may fInd useful. Publications such as Compute!,
Creative Computing, Byte, and Personal Computing all
have had articles about the Commodore 128. The best thing
to do is go through the table of contents in the various
computer magazines in you local computer store. This will
tell you at a glance if there are any articles or programs for the
Commodore 128. As more and more clubs begin springing

207

up, club newsletters can often be an invaluable source of good
tips and programs for your computer, and they are a resource
that should not be overlooked

Beyond BASIC

Besides BASIC, your computer can be programmed and can
run programs in several other languages. In some cases,
special hardware devices are required to run the languages,
and there is special software required as well. We'll look at
some of these other languages.

Assembly Language. Assembly language is a "low level"
language, close to the heart of your computer. It is quite a bit
faster than BASIC and virtually every other language we will
discuss. To write in assembly language, it is necessary to
have an "assembler" to enter code. This language gives you
far more control over your Commodore 128 than BASIC, but
it is more difficult to learn, and a program takes more
instructions to operate than BASIC. (However, the object
code is more compact, taking up fewer sectors on your disk.)
One of the best assemblers now on the market for the

Commodre128 is,

MERUN128
Roger Wagner Publishing
P.O. 582
Santee, CA 92071

In addition to having a full set of macros, editor and other
standard assembler features, Merlin comes with an excellent
monitor for examining machine code in your programs and
ROMs. The manual will help you get started programming in
assembly language. All programs written with Merlin can be
automatically saved to disk as binary, source and sequential
files. Unlike the Commodore 64 version of Merlin, the
Commodore 128 version is configured for 80 column mode
only.

To learn how to program in assembly language, the following
two books were found to be the most useful:

1. Cornnwdore 128 Prograrruner's Reference Guide
This book can be purchased from your local book or

computer store. Published by Bantam Books, this is the

single most important book for advanced programming you
canfmd.

2. Assembly Language for Kids: Commodore 641128
To get started in assembly language programming, this book

is hard to beat, no matter how old you are. It was originally
written for the Commodore 64, but u~ated for the
Commodore 128. All of the listings are provIded in the built­
in mini-assembler inside your machine. This book is full of
examples, and it covers the major assemblers for the
Commodore 64 and 128. It's available at your local book or
computer store or from Microcomscribe.

3. The Commodore 128 Mode: An Inside View
For those moving from the beginner to intermediate level of

programming, this unique book is an excellent step-by-step
tutorial. The authors have a real knack for clearing up the
mysteries of how your computer works, anq there are lots of
programs for you to key in and learn from. It's available at
your local book or computer store or from Microcomscribe.

:High and Low Level Languages:

When computer people talk of "high" and "low" level
languages, think of high level being close to talking in normal
English and low level in terms of machine language, e.g.
binary and hexadecimal. Assembly language is a low level
language, one notch above machine level. The other
languages we will discuss are high-level.

PASCAL
Pascal is a high-level language originally developed for

teaching students structured programming. It is faster than
BASIC, but is not as difficult to master as assembly language.
It is probably the most popular high level language next to
BASIC. You will find different versions of Pascal, but the
language is fairly well standardized so that whatever version
of Pascal you purchase will work with just about any Pascal
program. You can also get CP/M versions of Pascal for your
Commoodre 128. The following books may be useful to
learn about the language.

1. Elementary Pascal: Learning to Program Your Computer
With Sherlock Holmes. By Henry Ledgard and Andrew

209

Singer. (New York: Vintage Books.) This is a fun way to
learn Pascal since the authors use Sherlock Holmes type
mysteries to be solved with Pascal. It is based on the draft
standard version for Pascal called X3J9/81-003 and may be
slightly different from the version you have, but only slightly
so.

2. Pascal from BASIC. By Peter Brown. (Reading,MA:
Addison-Wesley, 1982). If you understand BASIC, this
book will help you make the transition from BASIC to
PASCAL. It is written with the PASCAL novice in mind but
assumes the reader understands BASIC.

FORTH

FORTH is a very fast high-level language, developed to create
programs that are almost as fast as assembly language but take
less time to program. Faster than Pascal, Basic, Fortran,
Colbol, and virtually every other high-level language,
FORTH is programmed by defining "words" that execute
routines. New words incorporate previously defined words
into FORTH programs. The best part of FORTH is that
several versions are public domain. The Fig (FORTH Interest
Group) FORTH version is in the public domain, and if you
are handy with assembly programming, you might even be
able to install your own.

The best source to learn about what is available is through the
publication, FORTH Dimensions (see below) and your
magazines where Commodore 128 products are advertised.
Good books on learning FORTH are now plentiful. For
learning FORTH, the following are recommended:

1. Mastering FORTH by Anita Anderson, Martin Tracy and
Micromotion. (Englewood Cliffs, NJ: Brady, 1984.) This
book is the most complete introduction to FORTH using the
83-Standard version of FORTH. It's a good tutorial with
helpful illustrations.

2. FORTH Programming by Leo 1. Scanlon (Indianapolis :
Howard S. Sams & Co., 1982). This book uses the FORTH-
79 and fig-FORTH models as standards, thereby providing
the user with the most widely distributed versions of FORTH.
This is a well organized and clear presentation of FORTH.

210 ii_

3. Starting FORTH and Thinking FORTH by Leo Brodie
(Englewood Cliffs: Prentice-Hall). These well written and
illustrated works on FORTH for beginners are excellent
tutorials. Starting FORTHUses a combination of words from
Fig, 79-Standard and polyFORTH, while the later Thinking
FORTH uses the newer FORTI!-83 standard ..

4. Pocket Guide to FORTH by Linda Baker and Mitch
Derick. (Reading, Mass. : Addison-Wesley, 1983). This is a
handy alphabetical reference to the FORTI! vocabulary and a
good explanation of the structure of FORTI!. It is good for
beginners since each FORTH instruction is explained clearly
and easy to find. However, it should be considered a
supplement to one of the above books.

5. FORTH Dimensions. Journal of FORTI! INTEREST
GROUP. P.O. Box 1105, San Carlos, CA 94070. This
periodical has numerous articles on FORTH and tutorial
columns for persons seriously interested in learning the
language.

CP/M
For the Commodore 128, there are several excellent CP/M
programs available. In fact, CP/M has one of the largest
available public domain libraries of any language. Many
business programs, including word processors and data base
programs, are available in CP/M, and for those primarily
mterested in business and professional applications, CP/M is
certainly something you will want to look into. The
Commodore 128 has a built-in Z-80. It comes with a disk
with CP/M operating system. When running CP/M on your
Commodore 128, the Z-80 microprocessor takes over
operations from the 8502. With CP/M, you can then install
virtually any program running on CP/M, including other
languages such as Pascal and FORTH.

Miscellaneous Languages

Besides the above languages, it is possible to get disks with
'C', COMAL,PROMAL, FORTRAN, LOGO, PILOT and
other languages for specialized and general applications.
LOGO and PILOT, for example, are used in teaching children
programming, while COLBOL is used primarily in business
applications. Before you spend time, money, and effort on
another language, though, it is highly recommended that you

211

carefully examine your needs. If your main interest is in
developing your own programs, first learn BASIC thoroughly
and see what you can do with it. If it fits your needs, and its
relatively slow speed is sufficient for your uses, then your
time will be better spent improving your programming skills
in BASIC. If your main interest is in using application
programs, then the language capability depends on the
programs you are using. Just about all professionally
produced programs written with a CP/M operating system
will run on a Commodore 128 without any other added
hardware. (This includes programs written in Pascal,
FORTH, etc.)

Compilers: Turning BASIC Programs into
Machine Language

Finally, if you find that programming in BASIC is most
suitable for you, but you would like to speed up your
programs, a simple way to do that is with a compiler.
Essentially, a compiler is a program that transforms your code
into a binary file that will run 4 to 5 times faster than
Commodore BASIC 7.0. All you do is write the program in
BASIC, compile it, and then save the compiled program.
From then on, you run your compiled program as a machine
language program. There are a lot of BASIC compilers for
the Commodore 64 , but ones for the Commodore 128 are
just starting to become available. There's an excellent article
in the January/February 1986 issue of Commodore
Microcomputers by Tom Benford on BASIC compilers if
you'd like to fmd out more.
Algorithms

An algorithm is defined as "A set of instructions in computer
programming that performs a single task." We have seen
many different ones throughout the book. Most have been
simple, but with some of our programs, we introduced a little
sophistication. The following programs represent two
different types of algorithms. First, the sort algorithms show
different ways to put strings in alphabetical order. They
represent efforts in improving the sorting work done by your
computer to make the sorting faster. We also included some
different scrolling and entry algorithms in the programs as
well. Second, we included a pie chart program representing
another way of working with a limited number of space. This
time, we have to consider the number of degrees in a circle or

ellipse instead of the screen pixel matrix.

Sorts. These programs will sort strings for you. They
represent different algorithms, and you can see that certain
algorithms work faster than others. The "Bubble Sort" is the
simplist and slowest of the three for wholly unsorted lists, but
it works very well with partially sorted lists. The "Shell Sort"
and "Quick Sort 2" work much faster in general than the
"Bubble Sort", but they use far more complex formulas. Test
them to see which works best for your sorting needs. You
will probably want to use these sorts in your programs that
require some alphabetic manipulation.

Bubble Sort

10 SCNCLR
20 PRINT "ENTER 10 WORDS"
30 PRINT: FOR X= 1 TO 10
40 INPUT "WORD-> "iW$(X)
50 NEXT X
60 T=X-1
100 REM ***********
110 REM BUBBLE SORT
120 REM ***********
130 FLAG=O : FOR S=l TO T-1: IF W$(S) <=

W$(S+l) THEN 150
140 T$=W$(S) :W$(S)=W$(S+l) :W$(S+l)=T$:

FLAG=l : T=S
150 NEXT S : IF FLAG=l THEN 130
200 REM *******************
210 REM ALPHABETICAL OUTPUT
220 REM *******************
230 SCNCLR: FOR X=l TO 10 : PRINTW$(X) :NEXT

Shell Sort

10 SCNCLR RV$=CHR$ (18)
20 INPUT"HOW MANY WORDS TO ENTER "iN%
30 DIM A$(N%+2)
40 FOR N=l TO N%
50 INPUT "ENTER WORD "iA$(N)
60 V=V+1 : NEXT N
70 SCNCLR : FOR I=l TO 10 : PRINT : NEXT
80 M$=" ALPHABETIZING" : L=20-LEN(M$)/2

213

90 PRINT TAB(L)RV$;M$
100 REM ***********
110 REM SHELL SORT
120 REM ***********
130 Y=l
140 Y=2*Y : IF Y<= N THEN 140
150 Y=INT(Y/2) : IF Y=O THEN 210
160 FOR X=l TO N-Y:Z=X
170 K=Y+Z : IF A$(Z) <= A$(K) THEN 190
180 SWITCH$=A$(Z) : A$(Z)=A$(K) :

A$(K)=SWITCH$:Z=Z-Y : IFZ>O THEN 170
190 NEXT X : GOTO 150
200 REM *****************
210 REM ALPHABETIC OUTPUT
220 REM *****************
230 SCNCLR
240 HOME$=CHR$(19)
250 FOR N=2 TO V+1
260 PRINT A$(N) : C=C+1
270 IF C=20 THEN PRINT HOME$;
280 IF C>19 THEN PRINT TAB(20);
290 IF C=40 THEN GOSUB 310
300 NEXT N : END
310 PRINT RV$ "HIT A KEY"
320 SCNCLR : RETURN

Quick Sort

10 SCNCLR : RV$=CHR$(18)

GET KEY H$

20 INPUT"HOW MANY WORDS TO ENTER ";N%
30 DIM A$(N%+1)
40 FOR N =1 TO N%
50 INPUT "ENTER WORD " ; A$ (N)
60 Z=Z+l : NEXT N
70 SCNCLR : FOR I=l TO 10
80 PRINT : NEXT : M$="ALPHABETIZING"
90 L=20-LEN(M$)/2:PRINT RV$;SPC(L);M$:PRINT

CHR$ (146)
100 REM *********
110 REM QUICKSORT
120 REM *********
130 Sl=l
140 L(l)=l
150 R(l)=N
160 L1=L(Sl)

170 R1=R(Sl)
180 Sl=Sl-l
190 L2=L1
200 R2=R1
210 X$=A$(INT«L1+R1)/2»
220 C=C+1
230 IF A$(L2»=X$ THEN 260
240 L2=L2+1
250 GOTO 220
260 C = C1
270 IF X$>= A$(R2) THEN 300
280 R2=R2-1
290 GOTO 260
300 IF L2>R2 THEN 370
310 S=S+1
320 T$=A$(L2)
330 A$(L2)=A$(R2)
340 A$ (R2) =T$
350 L2=L2 +1
360 R2=R2-1
370 IF L2<=R2 THEN 220
380 IF L2>=R1 THEN 420
390 Sl=S1+l
400 L(Sl)=L2
410 R(Sl)=R1
420 R1=R2
430 IF L1<R1 THEN 190
440 IF Sl> 0 THEN 160
500 REM *******************
510 REM ALPHABETICAL OUTPUT
520 REM *******************
530 SCNCLR
540 FOR N = 2 TO Z +1
550 F=F+1
560 IF F> 22 THEN GOSUB 600
570 PRINTA$(N)
580 NEXT N
590 END
600 REM **********************
610 REM STOP WHEN SCREEN FILLS
620 REM **********************
630 PRINT RV$ "HIT ANY KEY TO CONTINUE n

640 GETKEY AN$
650 F=O : PRINT CHR$(146)
660 RETURN

215

Pie Chart. We have already had some experience making
bar graphs. Making pie graphs or charts involves similar and
different algorithms. Bar graphs are programmed on the basis
of the number of horizontal and vertical pixels on a screen.
Pie charts are based on the number of different 'slices' of a
pie can be placed in a 360° circle or ellipse. In the following
pie chart program, the algorithm in line 100 recalculates each
value in terms of the total values entered divided by 360. That
value then goes into making up part of the arcs to complete the
circle. However, we did not include algorithms for coloring
each different slice or labelling (or even numbering) each
silce. See if you can fIx up our program to do that

Pie Chart (Fixer Upper)

10 SCNCLR
20 INPUT "HOW MANY EMTRIES ";N%
30 SCNCLR
40 DIM P (N%)
50 FOR X=l TO N%
60 PRINT "ENTRY t"iX; INPUT P(X)
70 T=T+P(X)
80 NEXT X
90 FOR X=l TO N%
100 P(X)=INT(P(X)/(T/360))
110 NEXT
200 REM **********
210 REM DRAW CHART
220 REM **********
230 GRAPHIC1,1
240 COLOR 1,2
250 X=160 : Y = 100 R=50
260 FOR G=l TO N%
270 EA=EA+P(G)
280 PRINTBA,EA
290 CIRCLE 1,X,Y,R"BA,EA,0,1
300 XR=RDOT(O) : YR=RDOT(l)
310 DRAW 1,XR,YR TO X,Y
320 NEXT

Key Tricks

Up to this point we have not used a number of short-cuts
available on your keys. This is because it was important for

you to fIrst get used to the statements and how to use them
correctly. Also, as we will see, the short-cuts do not clearly
show you what is happening on your computer as fully as
writing out the commands. In Appendix K of your
Commodore-128 System Guide there is a chart that shows
how to enter the fIrst one or two letters of a command and
then SHIFf the second or third letter to get the entire
command. This will save you some time in programming,
but it is diffIcult to read the command until you get used to it.
For example, put a program into memory and enter "L
{SHIFf-I} and RETURN. The command is the same as
entering LIST except you only have to make two key presses
instead of four. Now, clear memory and enter the following:

10 ? C {SHIFT-H} (147) : A$= "ALLRIGHT"
20 ? T {SHIFT-A} 10); R {SHIFT-I} (A$,5)

Before you RUN the program, can you guess what will
happen? If you cannot, don't feel bad since it is confusing,
especially the way it appears on the screen. When you RUN
the program, it will clear the screen and print the message
"RIGHT" 10 spaces from the left side of the screen at the top.
Now LIST your program, and all the commands are clear.
These key short-cuts are handy in some cases and confusing
in others. The LIST command is usually from the Immediate
Mode, and it is handy to use it in the abbreviated fashion, but
until you become better acquainted with programming, these
short-cuts may be more confusing than helpful. Use the ones
you feel comfortable with, and introduce them gradually.

Function Keys

You know how to change your function keys using KEY.
The following are some we liked and found useful:

KEY 1, "SCNCLR : LIST' + CHR$(13) No one wants
to list their program on a messy screen.

KEY 3, "ASC(' + CHR.$(34). This will get those ASCII
values quickly.

KEY 7, "RENUMBER" That's a long command used
a lot.

217

KEY 2, "!@#$%$&*" + CHR$(7) Express yourself
when your progam bombs.

Utility Programs

What's a Utility? Utility programs are programs that help
you program or access different parts of your computer.
Some utilities are for writing BASIC programs, some for

sound and some for graphics. For example, there are utilties
for transforming BASIC programs into sequential files. This
is useful if you want to send a program over a modem. In
fact, here's a one liner from the immediate mode that will do
exactly that. (Not quite as elegant as the commerical versions
though.) First load the BASIC program you want converted
into memory, then key in the following using a different name
from your BASIC flle. Whatever name you use will be
written to disk:

DOPENtl,"FILENAME.S" : CMDl : LIST: PRINTU
: DCLOSE <Return>

If you join a Commodore 128 Users Group, you will learn
about a lot more utility programs and other's experiences with
them. Like all other programs that you are thinking of
buying, ask other users about them and get a demonstration of
their use fIrst!

Word Processors

Your Commodore 128can be turned into a first class word
processor with a word processing program. Word processors
transform your computer into a super typewriter. They can
do everything from moving blocks of text to finding spelling
mistakes. Editing and making changes is a snap, and once
you get used to writing with a word processor, you'll never
go back to a typewriter again. This book was written with a
word processor, and it took a fraction of the time a typewriter
would have taken. (Believe me, I've written 10 other books
with a typewriter!) There are some limitations with word
processors. To give you some help in making up your mind,
the following are some features you might want to look for in
a word processor:

1. FindlReplace.
Will find any string in your text and/or fmd and replace any

one string with another string. Good for correcting spelling
errors and locating sections of text to be repaired.

2. Block Moves.
Will move blocks of text from one place to another. (e.g.

Move a paragraph from the middle to end of document.)
Extremely valuable editing tool.

3. Link Files.
Automatically links files on disks. Very important for longer

documents and for linking standardized shorter documents.

4. Line/Screen Oriented Editing.
Line oriented editing requires locating beginning of line of

text and then editing from that point. Screen oriented editing
allows beginning editing from anywhere on the screen. The
latter form of editing is important for large documents and
where a good deal of editing is normally required.

S. Automatic Page Numbering.
Pages are automatically numbered without having to

determine page breaks in writing text

6. Imbedded Code.
In word processors, this enables the user to send special

instructions directly to the printer for changing tabs, enabling
special characters on the printer and doing other things to the
printed text without having to set the parameters beforehand
and/or having the ability to override set parameters.

7. Spelling Checker. Even the best spellers make typing
and spelling mistakes. A spelling checker compares the
words you've written with a dictionary to see if there are any
misspelled or "suspect" words. This feature is available in
Commodore 128 word processors, and they are well worth
any extra cost

These are just a few of the things to look for in word
processors. As a rule of thumb, the more a word processor
can do, the more it costs. If you only want to write letters and
short documents, there is little need to buy an expensive word
processor. However, if you are writing longer, more

219

complex and a wider variety of documents, the investment in
a more sophisticated word processor is well worth the added
cost. If you have specialized needs (e.g. producing billing
forms), you will want to look for those features in a word
processor that meets those needs. Therefore, while a word
processor may not do certain things, it may be just what you
want for your special applications. As with other software,
get a thorough demonstration of any word processor on an
Commodore 128 before laying out your hard earned cash.

As a cautionary note, word processors take a bit of time to
learn to use effectively. It is possible to start writing text
immediately with most word processors, but in order to use
all of their features, some practice is required. One of the
strange outcomes of this is that once a user learns all of the
techniques of a certain word processor, he or she will swear it
is the best there is! Therefore, avoid arguments about the best
word processor. It's like arguing politics and religion. Also,
if you have a printer, check to make sure a particular word
processor will send text to your printer. This is especially
true if you have a parallel printer adaptor.

Data Base Programs

When you need a program for creating and storing
information, a "data base" program is required. Essentially,
professionally designed data base programs are either
sequential or random access files. When you use one, all you
have to do is to use the pre-defined fields provided or create
fields. For example, a user may want to keep a data base of
customers. In addition to having fields for name and address,
the user may want fields for the specific type of product the
customer buys, dates of last purchase, how much money is
owed, date of last payment, etc. Probably more than most
other packages, data base programs should be examined
carefully before purchasing. Some of the more expensive
data bases can be used with virtually any kind of application,
but if you're only going to be using your data base to keep a
list of names and addresses to print out mailing labels, for
example, a data base program designed to do that one thing
will usually do it better and for a lot less money. Some word
processors can be used as mailing list data base systems in
addition to word processors; so you may not even need a data
base program if your word processor can handle your needs.
On the other hand if your needs are varied and involve

sophisticated report generation and changing record fields,
then do not expect a simple, specialized program to do the
job. There are several other data base programs, including
public domain ones available through your club.

Business Programs

Business programs have such a wide variety of functions that
it is best to start with a specific business need and see if there
is a program that will meet that need. On the other hand there
are general business programs that are applicable to many
different businesses. Specific business programs include
ones that deal only with real estate, stock transactions and
nutritional planning. More general programs include
"Electronic Spreadsheets," "Financial Planning," and, as
discussed above, data base programs.

Unfortunately, business people often spend far too much for
systems that do not work. They believe that if one spends a
lot of money on software and hardware, it must be better than
for a less expensive simpler system. This thinking is based
upon a "You Get What You Pay For" mentality, and it leads
to systems that are not used at all. Here is where a good
dealer or consultant comes in handy. First, since computers
are getting more sophisticated and less expensive, often you
do not "Get What You Pay For" when purchasing a big
expensive one. Often all the business person ends up with is
a dinosaur system that is outmoded, too big and too expensive
for the needs. Some computer dealers specialize in helping
the business person. They will help set up the needed system
in your place of business, help train office personnel and
provide ongoing support. These dealers will charge top dollar
for your system and supporting software, as opposed to the
discount dealers and mail order firms; however, if you have
any problems you will have someone who will come and help
you out. Since the Commodore 128 is so inexpensive to
begin with, the extra money spent on buying from a business
supportive dealer is well worth the little extra cost.
Alternatively, there are several consultants for setting up your
system. If you use a consultant, get one who is an
independent without any connection to a vested interest in
selling computers. Contact one through your phone book and
tell him you want to set up a Commodore 128 system in your
office and let him know exactly what your needs are. If they
are familiar with your system, they will know the available

221

software and peripherals you need. If they try to sell you
another computer, that probably means they are unfamiliar
with your system, and it is a good idea to try another
consultant. However, if you are told by several consultants
that you needs cannot be met by a Commodore 128 then you
may indeed may need a larger system. I do not mean to sound
cynical, but I have encountered too many unhappy business
people who bought the wrong system for their needs. One
busmessman said he paid $14,000 for a computer system that
never did work for his requirements and finally bought a
microcomputer system for about a tenth of the price and
everything worked out fine. This does not mean that a
business may not require an expensive mainframe to handle
certain business functions, and the Commodore 128 certainly
has limitations. However, before you buy any system, make
sure it does what you want and have it shown to you working
in the manner you expect it to. Often you will find that the
less expensive new micros like the Commodore 128 will
actually work better than costly big machines.

Graphics Packages

In our chapter on graphics we discussed some of the
Commodore 128's capabilities with graphics. However,
certain uses require either highly advanced programming
skills or a good graphics package. For example, it is possible
to draw on the screen in hi-resolution graphics, just as you
would with a pallet. The pictures produced can then be saved
to disk or printed out to your printer.

Harware

The Commodore 128 is "expandable." That means you can
add various attachments to it to make it do more than it does
normally. In the back of your machine there are 3 ports
where hardware extensions can be attached, and on the right
side there are two additional sockets for game paddles and lor
a joystick. Game paddles and joysticks are used for games as
well as other programs. For games, they guide rockets, space
ships and characters against the forces of evil. However, they
are also used for drawing graphics and input in other
programs as well. Other hardware attachments are interfaces
for various peripherals. One, called an IEEE Interface, can
connect up to 15 (!) devices to your Commodore 128. Three
companies that make IEEE interfaces for the Commodore 128

222 ii_

are:

1. The Computer Works
2028 West Camel Back Road
Phoenix, AZ 85015 (602)249-0611

2. Richvale Telecommunications
10610 Bayview Plaza
Richmond Hill, Ontario lAC 3N8 (416) 884-4165
(IEEE Interface with BASIC 4.0)

3. Micro Systems Development, Inc.
11105 Shady Trail Suite 104
Dallas, TX 75229 (214) 241-3743

Another important peripheral you may want to consider is a
parallel interface board. With these you can connect your
Commodore 128 to many different low priced parallel
printers. The following are available for your computer:

1. CPI COMMODORE-64 PARALLEL INTERFACE
(Works with C-128)
Micro Systems Development, Inc.
11105 Shady Trail Suite 104
Dallas, TX 75229 (214) 241-3743

2. (a) PARALLEL INTERFACE $19.95
(b) INTElLIGENT PARALLEL lNTERF ACE $119.95

Micro-Ware Distributing, Inc
P.O. Box 113
Prompton Plains, N.J. 07444 (201) 838-9027
The inexpensive PARALLEL INTERFACE (a) will connect

your Commodore 128 to any parallel printer for dumping text
to your printer. The INTELLIGENT PARALLEL
INTERFACE (b) provides a full emulation of Commodore
printers for printing text and graphics. Like software, before
you purchase all interface or peripheral, make sure it works
with your computer! Unfortunately, many hardware
attachments come with such poor documentation that without
someone to show you how to work it, it is almost impossible
to get them to operate properly. Again this is where a users
group proves invaluable. Ask other members about their
experiences before buying a peripheral.

Modems and Communications

One of the most exciting things you can do with your

computer is to communicate with another computer. Not only
can you communicate with another Commodore 128, but you
can access other micros and even tie into big mainframes.
With the Commodore 128 you are in luck, for with the
VICMODEM by Commodore and the right software, you can
inexpensively make such connections. Two modems for the
Commodore 128, the VICMODEM 1600 and the 1670
Modeml1200, will work with either your Commodore 128 or
64. To be honest, the software that comes with the
VICMODEM isn't so hot, and a lot of people have
complained that they cannot get their VICMODEM working.
However, since the price is so low ($48.95 in one discount
store I visited, and FREE with one deal [See Free Modem!
below]), it seems a shame to give up on it However, do not
despair, for with good communications software, the
VICMODEM is a terrific little device! I highly recommend the
following communication package:

SMART 64 TERMINAL $39.95
Microtechnic Solutions, Inc.
P.O. Box 2940
New Haven, CT 06515

With Smart 64 Terminal, you can transform BASIC
programs into sequential files and send programs to your
friends via your modem. You have to send your files in the
Commodore 64 mode, but as long as the file is in a sequential
file, there's no problem. (In the near future, more
Commodore 128 communication software will be available.)
It is possible to both upload and download programs, save
them on disk and then convert them back to BASIC files to be
RUN. The program is simple yet powerful, and it can be
used to dump text to any serial printer.

Besides calling your friends and local bulletin boards FREE,
you can also tap into some really big information systems for
a price. Three such systems include QuantumLink™, The
Source,TM Compu-Serve™ and Dow Jones
NewsIRetrleval™. QuantumLink, The Source, and Compu­
Serve have all kinds of information, news and programs,
charging about $6 an hour when you log on. Talk to some
subscribers to these and other such networks to see if they
have what you need.

=DEAL!=

I don't know whether they will still have this deal when you
get your modem or communication package, but the
VICMODEM included free membership in CompuServe and
Dow Jones plus one free hour of use. This is a good way to
check out these services to see if they are what you need. If
they are not, you're not out the cost of membership. So
before you purchase a modem, see if they include such a deal.

If finances are not a major consideration, and you do a lot of
communications; then you should really consider the more
expensive 1670 Modem/1200. The inexpensive modems run
at 300 baud, while the 1670 runs four times faster at 1200
baud. The Commodore 1670 comes with first class
Commodore 128 communications software too; sOloU really
get a good deal. If you are billed by the amount 0 time you
spend on your phone, a 1200 baud modem will pay for itself
in the long run.

=Free Modem!=

Another deal we ran across was a free Commodore 300 baud
modem you get by signing up with QuantumLink™. We
don't know whether they still have this deal, and you have to
sign up for four months of their service, but for $39.80, it
looked good to us. Give 'em a call at 1-800-392-8200 and
see if they still have it. If not, see if your rich uncle will give
you one for your birthday.

Summary

The most important thing to understand from this last chapter
is that we have only scratched the surface of what is available
for the Commodore 128 computer. There is much, much
more than a single chapter could possibly cover and, as you
come to know your Commodore 128, you will find that the
choice of software and peripherals is limited only by the
confusion in making up your mind. There were other items
for the Commodore 128 that came to mind, but this chapter
and book would have never ended were I to indulge myself
and keep prattling on. The software and hardware I
suggested were based on personal preferences, and I would
suggest that you choose on the basis of your own needs and

225

preferences and not mine. Think of the items mentioned as a
random sampling of what one user found to be useful and
then after your own sampling, examination and testing get
exactly what you need. As you end this book, you should
have a beginning level understanding of your computer's
ability. Whether you use it for a single function or are a
dedicated hacker, it is important that you understand the scope
of its capacity to help you in your work, education and play.
It is not a monstrous electronic mystery, but rather a tool to
help you in various ways. You may not understand exactly
how it operates, but you probably do not understand
everything about how your car's engine works either, but that
never prevented you from driving. Furthermore, like your
car, you should think of your computer as a vehicle that will
take you where you want, and never again consider it a
machine that you must follow.

•
Glossary

BASIC 7.0 Statements, Functions,
and Commands

This glossary is arranged in alphabetical order and contains
statements from all of the Commodore 128 BASIC 7.0. The
examples are set up to show you how to use the commands
and their proper syntax. In some cases when a command has
different contexts of usage, more than a single example will
be used. Some examples are given in the Immediate mode
and some in the Program (deferred) mode <those with line
numbers> and some with both. Results are given to show
what a particular configuration would create in some examples
for clarification. A number of statements were not covered in
the text, but they are included here for your convenience.

ABS() Gives the absolute value of a number or variable.
PRINT ABS(l23.45)

AND Logical operator used in equations (assignments) and
logical expressions.
140 IF A$ < > "Y" AND A$ < > "N' THEN GOTO 100
50 ON A$ = "Y" AND SUM AND cr GOTO 100, 200,300
A = A$ = "Y" AND B$ = "Y"

227

POKE 6, A$ = "Y" AND F

APPEND Adds data to end of existing sequential text file.
200 APPEND#9, "MYFORTUNE"

ASC() Returns ASCII value of fIrst character in string.
PRINT ASC ("W") or A$ = "Commodore" : PRINT
ASC(A$)

ATN () Returns arctangent of number or variable.
PRINT ATN (123)

AUTO Automatically enters line numbers in program.
Increments can be included if default is different from 10.

BACKUP Copies whole disk from one drive to another on
two drive system.
BACKUP DO TO D1

BANK SpecifIes current bank 0-15. Default bank is 15 in
128 mode.
BANK 3

BEGIN/BEND All lines between BEGIN and BEND are
executed on true conditional, but jumped over if not true.
10 INPUT "NUMBER=>";N
20 IF N > 7 THEN BEGIN
30 PRINT "THE VALUE";
40 PRINT "IS GREATER THAN"
50 PRINT "SEVEN"
60BEND
70 PRINT "TIIA T'S ALL"

BLOAD Load binary file into memory. Specifying drive,
device bank and beginning address are optional
BLOAD "SPRITE FILE"
BLOAD "MACHINE CODE" ,DO,U8,B 15,P4864

BOOT Boots both CP/M Plus master disk and bootable
binary fIle.
BOOT
BOOT "HOT STUFF' ,DO,U9

BOX Draws box in graphics at location specifIed by
opposite comers. Optional angle and paint parameters.

BOX 10,10,100,100
BOX X,Y,Xl,Y1,45,1

BSA VE Saves binary file to disk. Must include both
starting and ending address.
BSAVE "GRAFILE",B15,P1300 TO P1350
BSA VE "SPRITE1",BO,P3584 TO P4096

BUMP() Function to indicate which sprites collided.
Returns sprite raised to the power of the bit positon (0-7)
coresponding to sprites 1-8. BUMP(l)= Which sprites
collided, BUMP(2)=Sprite collied with object
200 SS=BUMP(l)
210 IF SS > 0 TIffiN GOSUB 300

CATALOG Shows disk files.
CATALOG

CHAR C,X,Y,$,R Displays alphanumeric characters on bit
mapped graphics screen in C color at positon X,Y with $
string and R reverse option.
40 CHAR 0, 15,2,"LABEL" ,1

CHR$() Returns the character with a given decimal value.

PRINT CHR.$(65)

CIRCLE C, X,Y,R,Ry,BA,EA,A,I Draws a circle
beginning at X,Y with radius of R and options of vertical
radius, beginning and ending angles, object angle and
increment other than default of 2 .
40 CIRCLE 1,100,100,20

CLOSE Closes specified OPENed file.
CLOSE 9

CLR All variables and arrays are reset to zero.
40CLR

CMD Directs output to specified device.
DOPEN#9,"TIllSLIST' : CMD9 : LIST: PRINT#9 :
DCLOSE

COLLECT Cleans up splatted files from disk.
COLLECT

229

COLLISION T,L Detects type of collison,l=sprite/sprite;
2=sprite/data, and sends program to line L.
500 COLLISION 0,1000
510 COLLISION 1,2000

COLOR A,N Assigns color N to area, A
lO GRAPHIC 4,1 : COLOR 2,5

CONCAT F2$ TO Fl$ Combines two data files on disk
with F2$ attached to end ofFl$.
CONCAT "FUE SECOND" TO "FUE FIRST'

CONT Continue program after a STOP, END, or error. or
Ctrl-Break.
CONT

COPY Single flle copy on dual disk drive.
COPY DO, "Space Apes" TO Dl, "Oz Apes"

COS() Returns the cosine of variable or number.
PRINT COS(123)

DAT A Strings or numbers to be read.
1000 DATA 2, 345, HELLO, "SAN DIEGO,
CALIFORNIA"

DCLEAR Clears all open channels and closes all flles.
(Similar to the initialize process on the Commodore 64).
DCLEAR

DCLOSE Closes all or specified open disk files.
DCLOSE
DCLOSE#9

DEC() Returns decimal values of hexidecimal string.
PRINT DEC("FE")

DEF FN() Defines a function for simple real variable.
lODEFFN A(X) = X * X
20 PRINT FN A(4)
(Results = 16)

DELETE Deletes line or range of lines.
DELETE 40-90

DIM Allocates maximum range of array.
130 DIM A$ (100)

DIRECTORY Displays files on disk
DIRECTORY

DLOAD Load file from disk into memory
DLOAD "GUNNER"

DOIWHILEIUNTILIEXITILOOP Repeats sequence until
conditional satisfied.

1. 10 DO WHILE X <> 5
20 PRINT "TIllS" : X=X+1
30 LOOP

2. 1000
20 INPUT #9,G$
30PRINTG$
40 LOOP UNTIL ST

3. 1000
20 INPUT "NAME";N$
30 IF N$="END" THEN EXIT
40 LOOP

DOPEN Opens disk file for read or write. Defaults to read.
50 OOPEN#9,"CARDFILE",W <Open for write>
50 DOPEN#9,"CARDFILE" <Open for read>
50 DOPEN#9,"CARDFILE",L30 <Open for relative file>

DRAW S,X,Y TO X1,Y1 Draws a line from X,Y to X!,Y1
in source color S
10 GRAPHIC 1,1
20 DRAW 1,1,1 TO 100,100

DSA VE Save program in memory to disk.
DSA VE "1HIS GEM"

DVERIFY Compares file on disk with program in memory.
Returns 'OK' if identical.
DVERIFY

END Terminates running of program and exits to Immediate
mode.

231

200END

ENVELOPE Sets envelope number, attack rate, decay rate,
sustain, release rate, waveform and pulse width.
ENVELOPE 2,12,12,12,12,3,255

ERR$(ER) Returns error type
10 ROM
RUN
PRINT ERR$(ER)
SYNTAX

EXP() Returns e to indicated power.
PRINT EXP (3)

FAST Speeds up to 2:MHz, but turns off VIC 40-column
screen.
10 FAST
20 FOR X=1 TO 1000 : PRINT X; : NEXT
30 SLOW

FETCH [Used only with expansion RAM module] Gets data
from extra memory.
FETCH 255,4864,1,0

FILTER Defmes the sound filter parameters in terms of
frequency, low-pass fIlter, bank-pass filer, high-pass filer and
resonance.
FILTER 2000,1,0,1,6

FORtrOINEXT/STEP Sets up loop with specified bottom
and top limit incremented or decremented by optional STEP at
NEXT.
40FORZ= 1 TO 100 STEP 5
50PRINTZ
60NEXTZ

FRE() Returns available memory.
PRINT FRE(O)

GET Reads one character at a time from keyboard.
1000
20 GET A$
30 PRINT A$
40 LOOP UNTIL A$="A"

232 = __________________________ iiiiii

GET# Reads in one byte at a time from open fIle.
8000PEN#9,"HORSERADISH'
90GET#9,A$

GET KEY Halts execution until kepress detected
lOGETKEY A$

G064 Reconfigures into Commodore 64 mode.
0064
ARE YOUR SURE?

GOSUBIRETURN Branches to subroutine at given line
number and comes back to the next line number after the
ooSUB after encountering RETURN.
100 GOSUB 200
110 PRINT A$

200 A$ = "Commodore 128"
210RETURN

GOTO Branches to given line number.
100 GOTO200

GRAPHIC S,C Configures graphic screen of choice (0-5)
with clear screen option.
20 GRAPHIC 4,1
90 GRAPHIC CLR

HEADER N$,N,D,V Formats (and erases!) disk with name
N$ and optionally N i.d. number on drive D and device V.
HEADER "ELEMENTARY"

HELP May type in or press HELP key to highlight most
recent mistake.
HELP

HEX$(D) Returns the hexadecimal value of given decimal
number,D.
PRINT HEX$(lO)

IF -- THEN -- ELSE Sets up conditional logic for
execution.
60 IF A$ = "Q" THEN END : ELSE GOTOlO

233

INPUT Halts program execution until string or numbers
entered and ENTER key is pressed. May enter message
within INPUT statement
90 INPUT "ENTER WORD-> "; W$(I)
100 INPUT "ENTER NUMBER -> "; A
110 INPUT "ENTER INTEGER NUMBER -> "; N%
120 PRINT "IDT 'RETURN TO CONTINUE ";
130INPUTR$

INPUT# Reads data from specified opened fIle.
230 DOPEN#9,"NAMES"
240 INPUT#9,A$

INSTR(A$,B$) Looks for A$ in B$ and returns position
of first character of B$. (Optional: INSTR{N,A$,B$) where
N equals the starting position in A$ to begin search.)
10 FULlNAME$ = "JOHN SMITHSON"
20 LAS1NAME$ = "SMITHSON"
30 N = INSTR(FUILNAME$,LAS1NAME$)
40 PRINT MID$(FUILNAME$,N)

INT() Returns integer value of number or variable.
PRINT INT(23.45)

KEY RedefIning or listing function keys.
1. KEY [Shows all current function key words.]
2. KEY 3,"SCNCLR : UST " + CHR$(13) [Redefines key.]

LEFf$(,) Returns specified number of characters from a
given string beginning with character at far left
10 A$ = "GOODBYE"
20 PRINT LEFr$ (A$,4)
(Results = GOOD)

LEN Returns the length in terms of number of characters of
a specified string.
PRINT LEN(A$)

LET Optionally used in assigning value to variables.
3OLETA=33

LIST Lists program currently in memory to screen.
LIST
UST30-80

LOAD Loads program specified from disk or tape.
Optionally, LOAD "FILENAME",R to load and run program.
LOAD "PLOT' <Tape>
LOAD "PLOT',8 <Disk>
LOAD "MACHPLOT' ,8,1 <Machine code>

LOCATE R,C Sets (R.)ow (C)olumn of next pixel. Places
cursor at R,C.
30 LOCATE 10,5
40 DRAW TO 200,100

LOG() Returns natural logarithm (to base E) of specific
number or variable.
PRINT LOG (15) or PRINT LOG (G)

MID$(, ,) Returns a portion of a string beginning with
the nth character from the left for the number of characters
indicated in the third position.
10 AS = "WONDERFUL"
20 PRINT MIDS(AS,4,3)
(Results = DER)

MONITOR Enters into machine language monitor.
MONITOR

MOVSPR N Moves sprite number N to in one of four
configured moves:
1. MOVSPR 1, 100,100 [Moves to specific XY coordinate.]
2. MOVSPR 1, -20,+20 [Moves to left(-)/right(+) and up(­
)/down(+) indicated number of pixels.]
3. MOVSPR 1,20;180 [Move sprite indicated number of
pixels at angle. Note: Uses semi-colon.]
4. MOVSPR 1,70 #10 [Move sprite at indicated angle and
speed 0-15.]

NEW Clears program and variables in memory.
NEW

NOT Logical negation in logical expression.
60 IF A NOT B THEN GOTO 100
70C=NOT (DANDE)

ONSets up computed GOTO or GOSUB to branch line
number. .
190 ON A GOSUB 1000,2000,3000

OPEN Accesses channel to input output device for reading
or writing data. [See ooPEN for disk access.]
500 OPEN 1,1,0,"NAMES" <Read cassette>
600 OPEN7,4 <Opens output to printer.>

OR Logical OR in logical expression.
130 IF A=lO OR B = 20 TIffiN GOTO 190
140 C = D OR E OR K

PAINT S,X, Y "Paints" a specified area of color source S,
centered at X,Y.
20 CIRCLE 1,100,100,50
30 PAINT 1,220,190

PEN() Function returns light pen infonnation:
O=X position
l=Y position
2=X position (80)
3= Y position (80)
4= Trigger value

5 GRAPHIC 1,1
10 00 UNTIL PEN(4)
20 X=PEN(O) : Y=PEN(l)
30 DRAW 1,X,Y

PLAY Plays string of notes.
PLAY "C D E F GAB"
10 TUNE$="A BAD FAD"
20 PLAY TUNE$

PEEK Returns memory byte's contents of given decimal
location.
170 D = PEEK (8000)
180 IF PEEK (8000) = 5 TIffiN GOTO 200

POINTER() Finds the address of variable.
lOV=lO
20 PRINT POINTER(V)

POKE Inserts given value in specified decimal memory
location.
POKE 8000,10 (Sets memory location 8000 to decimal value
10)

POKE DEC(" 13FD"),255

236 ii ..

POS() Gives the current horizontal position of the cursor.
10 PRINT "TIllS LINE";: PRINT POS(O)

POT(N) Gives the value of game-paddle potentiometer
where N is paddle 1-4.
30 IF POT(3) > 250 THEN GOSUB 200

PRINT Outputs string, number, expression, function or
variable to screen.
PRINT 1'2'3' "GO" F$ A' NO!: , , , '" 70

PRINT USING Outputs formatted strings or numbers to
screen.
50 PRINT USING "$##.##";N
60 PRINT USING "####.##";2345.00

PRINT # Prints (writes) output to disk or cassette file.
80 PRINT #1, NA$

PRINT#, USING Writes to fIle in PRINT USING
format (See PRINT USING).
90 PRINT #2, USING "$$####.##";N

PUDEF "n1n2n3n4" Used to replace in positions n1-n4 in
PRINT USING other than default symbols.

Default=
n1-blank
n2-comma
n3-decimal point
n4-dollar sign

50 PUDEF "***£" [Changes everything to asterisks except
dollar sign which is changed to pound sign.]

RCLR() Returns color codes for sources 0-6.
lOR = RCL(1)
20 IF R=4 THEN GOSUB 200

RDOT() Returns X(O), and Y(1) coordinates of last plotted
pixel and color (2) of pixel.
50 XP=ROOT(O) : YP=ROOT(1)
60 DRAW TO XP,YP

READ Enters DATA statement's contents into variable.
10 READ A : READ B$
20 DATA 5, "BATS"

237

RECORD#F,N,B Specifies record number N in ftle F in
relative files.
5000PEN #9,"CHA TIER"
6ORECORD#9,7
70 PRINT #9,V$

REM Non-executable statement. Allows remarks in
program lines.
10 BEll$ = CHR$(7): REM RINGS BELL

RENAME Used to rename ftles from BASIC.
RENAME "TIllS.DAT' TO "THA T.TXT'

RENUMBER N,I,O Renumbers BASIC program lines.
Optional newnumber, oldnumber and increment. Beginning
and increment default is 10.
RENUMBER
RENUMBER 200,10,188

RESTORE Resets position of READ to flfSt DATA
statement
10 FOR I = 1 TO 5 : READ A$(n : NEXT
20 RESTORE

RESUME [L] Goes to flfSt statement of line where error
occurred in error-handling routine OR optional line number.
10 TRAP 50
20 PRINT N$(88)
30 PRINT "BACK AGAIN"
40 END
50 PRINT "GOITA DIM THEM ARRAYS!"
60 RESUME 30

RETURN Returns program to next line after GOSUB
command
500RETURN

RIGHT$ (,) Returns the rightmost n characters of given
string.
10 A$= "COMPUTE!" : PRINT RIGlIT$(A$,4)
(Results = MOSn

RND() Generates a random number less than 1 and greater
than or equal to O.
PRINT RND(5)

238 ;;iiiiiiiiiiiiiii

INT (RND (1) * (N) + 1) - Generates whole random numbers
from 1 to N, with N being the upper limit of desired numbers.
INT(RND*(N2+2-N1)+N1) generates whole random
numbers fromNl to N2.

RSPCOLOR () Returns sprite color of multi color 1 and 2.
1lO IF RSPCOLOR(1)=5 AND RESPCOLOR(2)=8 THEN
GOSUB 500

RSPPOS (N , VO-V2) Returns sprite N's X,Y position or
speed where

VO=X position
V1=Y position
V2=SPEEO

lO SPRITE 1,1
20 MOVSPR 1,200 #12
30 RX=RSPPOS(1,O)
40 RY=RSPPOS(l,l)
50 RS=RSPPOS(l,2)
60 PRINT RX,RY,RS
70 GOTO 20

RSPRITE (N,VO-V6) Function to return parameter
characteristics of sprite.
100 FOR X=D TO 6
110 PRINT RSPRITE (l,X), : NEXT

RUN Executes program in memory or on disk.
RUN
RUN "ENOSE" <From disk>

SAVE Records program on tape or disk.
SAVE "GRAPH
SAVE "GRAPH',8

SCALE Changes scaling in bit mapped and multicolor
graphics.
lO GRAPIDC 2,1
20 ORA W 1,1,lO TO 300,lO
30 SCALE 1,1200,4300
40 ORA W 1,1,15 TO 300,15

SCNCLR Clear screen and place cursor in upper left comer
of screen.
lOSCNCLR

SCRATCH Delete file from disk
SCRATCH "DUMBPROGRAM"
ARE YOU SURE?

SGN Returns sign of numeric value with 1 = positive, ° = °
and -1 = negative.
K = SGN(-5) : PRINT K

SIN() Returns the sine of variable or number.
PRINT SIN(l23)

SLEEP X Pauses program X seconds.
60 SLEEP 3

SLOW Returns to 1MHz operation after FAST has been
issued.
SLOW

SO UND V,F,D Emits (V)oice sound of (F)requency (0-
65535) and (D)uration (0-32767)
SOUND 2,200,200

spe() Skips specified number of spaces in PRINT
statement
PRINT SPC(29); "HERE"

SPRCOLOR Ml,M2 Sets multicolor 1 and 2 for sprites.
SPRCOLOR 7,8
SPRDEF
[Example sets up color for multicolor sprite editing.]

SPRDEF Enter into sprite editor.
SPRDEF

SPRITE N,O,C,P,XE,YE,M Defmes sprite number, turns
sprites on/off, color, sets foreground priority, x and y
expansion and mode.
40 SPRITE 2,1,4,0,0,0,1

SPRSA V Stores sprites in one of three ways:
1. SPRSA V 1,A$ Sprite image in sprite 1 stored in A$
2. SPRSA V A$,2 Sprite stored in A$ transferred to sprite
3. SPRSA V 3,4 One sprite duplicated in another. [Sprite3
duplicated in 4]
100 SSHAPE S$,1,1,24,21

240 ii--.

110 SPRSA V S$,l
l20SPRSAV 1,2

SSHAPE $,Xl,Yl,X2,Y2 Saves rectangular area defined
by corners Xl,Yl opposite X,2,Y2 in string buffer.
40 SSHAPE F$,80,80,120,120

SQR() Returns the square root of variable or number.
PRINT SQR(128)

ST End of file variable for data fIles. ST =0 indicates the end
of fIle has not yet been reached.
10 ooPEN #9,"MONEY"
2000
30 INPUT#9,M$
40 LOOP UNTIL ST

STASH [Requires expanded memory] Moves memory to
expansion RAM.
810 STASH 255,4864,2,4000

STOP Halts execution and prints line number where break
occurs. (CONT command will re-start program at next
instruction after STOP command.)
100 STOP

STR$() Converts number/variable into string variable.
20 T= 123: T$= STR$(T) : TI$= "$" + T$ + ".00"

SWAP [Requires expanded memory] Exchanges contents of
RAM with expansions RAM.
390 SW AP 255,4864,2,0

SYS Execute machine language program in memory.
SYS4864

TAB () Sets horizontal tab from within a PRINT statement.
PRINT TAB(20);"HERE"

TAN () Provides the tangent of number or variable.
40 T = 34 : V = 55
50 R = T + V : PRINT TAN(R)

TRON and TROFF Turns on trace function for display of
line numbers in program execution. (Turned off with
TROFF.)

241

TRON

USR(X) Jumps to machine language program with starting
point located in addresses 4633 and 4634. Used for passing
parameters between BASIC and machine language routines.
220 V=USR(X)
330 PRlNT V

v AL() Used to convert string to numeric value.
30 H$ = "123" : PRINT V AL(H$)

VERIFY Compares program in memory with program on
tape or disk. (See DVERIFY for disk-only.)
VERIFY <tape>
VERIFY "FILEFOLDER"

VOL Sets volume for sound and music.(0-15)
50 VOL 4

WIDTH Sets graphic line widths to 1 or 2.
30 WIDTH 2

WINnOW Xl,Yl,X2,Y2,C Defmes and enters screen
window (40 x 25 max.)
WINDOW 10,10,30,30

XOR (,) Returns the exclusive OR of values.
10 A= 10 : B=20
20 C=XOR(A,B)
30 PRINT C

242 iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;_

• Appendix A
ASCII Charts

CHRS Values

0 513 102 0 153 Lt Green 204 0
1 524 103 [] 154 Lt Blue 205 lSI
2 535 104 [] 155 Gray 3 2061Z1
3 546 105 EJ 156 Purple 2070
4 557 106 C3 157 CRSR left 208 0
5 White 568 107 EJ 158 Yellow 209.

6 579 1080 159 Cyan 2100

7 58: 109 lSI 160 SPACE 211 [!]
8 Sh-CMO off59 ; 110 IZl 161 IJ 212 []

9 Sh-CMO on60 < 111 0 162. 213 GI
10 61 :;;; 1120 163 0 214 I2J
11 62 > 113. 164 0 2150

12 63 ? 114 0 165 0 216 ~
13 RETURN 64@ 115 [!] 166 • 217 []
14 Lowercase 65 A 116 [] 167 D 218 [!]
15 66B 117 Q 168 ~ 219 EB
6 67 C 118 ~ 169 ~ 2201J
17 CRSR 680 119 D 170 [] 221ITl

down

18 RVS on 69 E 120 ~ 171 [E 222~
19 Home 70 F 121 [] 172 ~ 223 ~

CRSR

243

20 Delete 71 G 122 ~ 173 [9 224 SPACE

21 72 H 123 EB 174 5J 225 []

22 73 I 124 IJ 175 ~ 226~
23 74 J 125 rn 176 ca 2270

24 75 K 126 [!] 117 0 2280

25 76 L 127 I"'IIIII!I 178 EiJ 2290
26 17M 128 179 ED 230 •

27 78 N 129 Orange 180 0 2310

28 Red 790 130 181 [] 232 IIIIl
29 CRSR right 80 P 131 182 [) 233~
30 Green 81 Q 132 183 U 234 []

31 Blue 82 R 133 f1 184 ~ 235 [E
32 SPACE 83S 134 f3 185 ~ 236 [Ii
33! 84T 135 f5 186 0 237 [9
34" 85 U 136 f7 187 iii] 238 5J
35# 86V 137 f2 188 ~ 239 ~
36$ 87W 138 f4 1890 240 CO
37 % 88X 13916 190 ~ 241 t!j
38& 89Y 140 f8 191 ~ 242 m
39 • 90Z 141 Sh- 192 8 243 ED

RETURN

40 (91 [142 Uppercase193 ~ 244 0
41) 92 £ 143 194 rn 245 []

42· 93] 144 Black 195 a 246 [)

43+ 94 t 145 CRSR up 196 El 247 0

44, 95-- 146 RVS off 197 El 248 ~
45 - 968 147 CLRI 198 bl 249 ~

HOME

46. 97~ 148INST 199 [J 250 D
47 I 98 rn 149 Brown 200 [] 251 iii]
480 998 150 Lt Red 201 W 252 ~
491 100 El 151 Gray! 202 C3 253 0
502 101 U 152 Gray 2 203 fJ 254 ~

255 ~

Poke Values

This next set of values corresponds to those POKEd into the
text screen beginning at 1024 ($400) [See Appendix B]. The
characters differ depending on whether the keys are set for
upper case or upperllower case combined.

UC UC/LC # UC UC/LC # UC UG/LL
------------_.-.---------------------------------------

O@ @ 51 3 3 102 •• 1 A a 524 4 103 0 0
28 b 535 5 104 ~ ~
3C c 546 6 105 ~ PI
4D d 557 7 106 [] []

5E e 568 8 107 [8 [8
6F f 579 9 1 08 ::::i [Ii
7G 9 58: 109 [9 [9
8H h 59 ; 110 6J6J
91 00< < 111 ~~

11) J 61 = = 112 caw
11 K, k 62 ~ ~ 113 E!j 0
12 L I 63 ? ? 114 @ ED
13 M m 64 E3 E3 115 BJ BJ
14 N n 65 ~ A 116 0 D
15 0 0 66 CD 8 117 [] []
16 P P 67 B C 118 [) []
17 Q q 68 El D 119 U 0
18 R r 69 U E 120 ~ ~
19 S 5 70 D F 121 ~ ~
20 T t 71 [J G 12200
21 U u 72 [] H 123 ~ ~
22 V v 73 El I 124 ~ ~
23 W w 74 [3 J 12500
24 X x 75 El K 126 ~ ~
25 Y Y 76 D L 127 ~ ~
26Z z 77 ISJ M

27 78 !Zl N
28 79 0 0

245

29 80 0 P
3D 81 • Q

31 82 0 R
32 SPACE 83 [!] S
33! 84 [] T
34 " " 85 Q U
35# # 86 ~ V
36$ $ 87 D W
37 % % 88 ~ X
38& & 89 [] Y
39' 90 0 Z

40(91 EatE
41) 92 IJ[]
42 * 93 corn
43 + + 94 ~.
44, 95 ~~
45. 96
46. 97 IJIJ
47 I 98 •• 480 0 99 DO
49 1 1 100 00
502 2 101 DO

III
Appendix B

40 Column Screen Character/Color Addresses

..,. , ...
$451 1'14
$478 11 ..
I4Ae 1184
S4C8 122" ,,..
1518 ,*
,... '344 _ ,"'"
SS9II 1424
S5II8 , ...
SOB , ... - , ... - , ...
SI58 1624 - , ... _ '704

S6De 17" _ ,""
$721 1824
$748 1864
5771 1914
$798 1944
S7C1 1984

"*" 55296
S""'" 55336

SOMe 56456
SDIIC8 ,....
$IlOFI 55536
$0918 55516
S090ie 55616
SD9fl8 50lI06
S~
SIl9B8 55736
S09El 55176
SDAM 55818
SOAJI 558!i6
SDA58 55898
SDA8D 55936
SOM8 5!;076
SOADI 561118
$OAFS 56156
S082II
S0848 56136
S08711 56176
S0898 56216
soece 56256
sOBEB S6296

247

MjcrocoDlScrjbe Product Gujde

The Commodore 128 Mode: An Inside View by Isaac
Malitz and Linda Edwards. This book explores the insides of
the Commodore 128, looking at memory banks, graphics
with and without the powerful new BASIC 7.0 commands
and just about everything else you would want to know about
this computer with the ability to address 1 MEGABYTE of
RAM. Once you've mastered the elementary level material on
the Commodore 128, this book is the next logical step. It is a
hacker's dream, with a guided tour of everything from the
built-in monitor to the storage of bits on disk. 250 pages.
$14.95 (ISBN 0-931145-06-6).

Assembly LaD2ua2e for Kids: Commodore 64/128
by William B. Sanders. This updated edition provides a
beginner's guide to assembly language programming on the
Commodore 64 and 128 in hmh the 64 and 128 modes. The
latest edition shows how to use the built-in mini-assembler in
the Commodore 128 to write programs to run in the 128
Mode. By showing the new addresses and banks for machine
language code, Commodore 128 users can program
without fear of using the wrong bank or subroutine jumps.
For Commodore 64 owners, it is still the best beginner's
guide to machine/assembly language programming showing
not only machine language coding, but how to use popular
Commodore 64 assemblers. 366 pages $14.95. (ISBN 0-
931145-00-7) Book with assembly/utility disk, $19.95.

Alo2rithms for Personal Computin2 by Dave
MacCormack and Toni Michael. Learn the main formulas for
programming in MBASIC the BASIC of CPlm on your
Commodore 128. This book will give you an understanding
of how programmers do everything from creat text processor
to write database programs. These algorithms can be applied
to BASIC 7.0 programs too. 252 Pages $14.95 (ISBN 0-
931145-07-04).

Microcomscribe books can be found in book and computer
stores worldwide. If you want to order directly from
Microcomscribe send check or money order (or Visa/Master
Card number) along with $1.50 for shipping to:

(!!JC!~~~~~~g~L~!

by

WILU4.M 13. §4,N()I:I1S

•
lhls powedul new BASIC makes programming a 101 easier lhan eve< before on your
Commodore 128. Using step-by-step expIcnoIIons a nd examples you will loom hew 10
write programs In BASIC 7.0 on your machine.

lhls booIc bmgs ~ ALllogether. Nol only does ~ shew you hew 10 wrtIe programs thai will
run on your COmmodore 128, but ~ also shews you hew 10 use the COmmodore 1571
atve. 01 course, ~ explains using you 128 with the 1541 atveorcosseltesystemas"""'.
~ picks up where your SYSTEM GUIDE leaves off by prcNIdlng on Inlegrated explanollorl
cI hew 10 wrtIe procIIcal. useful and jus! poln fUn programs. You also leam hew 10 use
you COmmodore 128 with serial and porollel printers. modems.)o'f'stId<s and how to
maximize the use cI you ~er so thai ~ Is not on expenslw peper weight or scm&­

lh/ng thai gets shut 0W<rf In the doset.

W this Is you first ~ or W you hoIIe rTICl'\Ied upfrom a Commodore64 orothe< micro­
~ ... , you will find this booIc a f1eosure chest fUll c1lnformotton. 1he clear direct
wrlffng and the many examples will gel the flrst-flme compute< CM'Il9fwrlffng programs
In no flmeotall. 1he programs are a ll for the 128 Mode so you know you will be u~ng the
most powedul reotures cI your COmmodore 128. For those who hoIIe rTICl'\Ied up from
another ~and know something about BASIC programming. this booIc will cIa1fy
BASIC 7.0 and shew some tricks thai are unique to this ve<stion of BASIC.

• ~'~' I..:D
• Lots of Pl'ograms. A checkbook. a database, graphics programs and much more.

You'd pay double the price cI the booIc for the programs alonel

• Cleor Explanations. ~ Is the dearest route 10 on understanding d BASIC 7.0 program­
ming you con get. lhls booIc evan moI<es the more odvonced concepts simple.

• Experlencel Dr. \\lliliom B. 5cndels' books hoIIe probably Iought more people how to
program than anyone e1se'& Oller 3OO.IXXl copies cI the BementOl'{ Corrmodooe 64
alone hoIIe sold worldwide In English and torelgn translollons.

ISBN 0-931145-09-0

